Skip to main content
EURAXESS

PhD position | Single crystalline 2D channel material by area-selective deposition for atomically thin transistors

The Human Resources Strategy for Researchers
29 Mar 2024

Job Information

Organisation/Company
IMEC
Research Field
Chemistry
Engineering
Researcher Profile
First Stage Researcher (R1)
Country
Belgium
Application Deadline
Type of Contract
Temporary
Job Status
Full-time
Is the job funded through the EU Research Framework Programme?
Not funded by an EU programme
Is the Job related to staff position within a Research Infrastructure?
No

Offer Description

Join an international and multidisciplinary research team to explore and manipulate three-atom-thin semiconductors at the forefront of semiconductor technology.

More than sixty years ago, selective epitaxial deposition of silicon (Si) revolutionized the integrated circuit technology [1-3]. Monocrystalline Si was grown by chemical vapor deposition (CVD) only at pre-determined openings in a mask, inhibiting the nucleation elsewhere. Future semiconductors, such as 2D transition metal dichalcogenides (TMDs) including molybdenum and tungsten disulfide (MoS2, WS2), can continue logic transistor scaling to Angstrom technology nodes. They can largely benefit from adopting such selective deposition concept. Not in the least, one avoids electrically detrimental crystal grain boundaries from forming inside the active heart of the semiconductor device [4,5].

 

Therefore, this PhD research explores innovative selective deposition concepts to mitigate TMD crystal defects by controlling where a TMD material grows, and how these crystals orient and eventually coalesce. The approach is based on the intentional introduction of artificial nanoscale features on an amorphous starting surface. During this PhD research, you will embark on a journey to reveal how the geometry, chemical composition and critical (physical) dimensions of the design affect where TMD crystals nucleate and how they orient during the CVD process. You can propose various strategies to alter the chemical reactivity of starting surface by surface functionalization, and to introduce a relief or symmetry to a planar surface.

 

Your research will greatly benefit from the expertise and analytical methodologies that have been developed in the international and multidisciplinary 2D materials research team at imec [6,7,8].

 

The PhD candidate is strongly encouraged to reflect on the considered research avenues by means of a comprehensive overview of the existing literature and analytical assessment. Depending on the personal interest, the candidate can explore the TMD adsorption and diffusion kinetics by either experimental means, or in combination with theory to understand better how to maximize selectivity towards the envisioned architecture. The candidate will work with state-of-the-art and industry-standard 300 mm CVD reactors, equipped with various transition metal and chalcogen precursors. This provides a unique perspective to explore the role of the CVD precursor chemistry on the TMD crystal growth mechanism. Lastly, plentiful opportunities arise for the candidate to further enrich personal and technical competences, for example through access to imec’s state-of-the-art clean room infrastructure and the imec academy development center, as well as research visit(s) to (academic) partners.

 

 

[1] Joyce, B. D. and Baldrey, J. A. (1962). “Selective Epitaxial Deposition of Silicon.” Nature, 195 (4840), 485–486.

[2] Filby J. D. and Nielsen S. (1967). “Single-crystal Films of Silicon on Insulators.” Br. J. Appl. Phys. 18 1357

[3] Klykov V. I., Sheftal N. N. and Hartmann E. (1979). “Artificial Epitaxy (Diataxy) of Silicon and Germanium.” Acta Physica Academiae Scientiarum Hungaricae, 47, 167–183

[4] Ly, T. H. et al. (2016). “Misorientation-angle-dependent Electrical Transport across Molybdenum Disulfide Grain Boundaries.” Nature Comm., 7, (10426)

[5] Kim, K.S., et al. (2023). “Non-epitaxial Single-crystal 2D Material Growth by Geometric Confinement.” Nature, 614, 88–94.

[6] Groven B., et al. (2017). “Plasma-Enhanced Atomic Layer Deposition of Two-Dimensional WS2 from WF6, H2 Plasma, and H2S.” Chem. Mater. 29 (7), 2927-2938

[7] Groven B., et al. (2018). “Two-Dimensional Crystal Grain Size Tuning in WS2 Atomic Layer Deposition: An Insight in the Nucleation Mechanism.” Chem. Mater. 29 (7), 2927-2938

[8] Shi Y., et al. (2021). “Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics.” ACS Nano 15, 6, 9482-9494

TMD

Type of work: 80% experimental, 10% theory, 10% literature

Supervisor: Annelies Delabie

Daily advisor: Benjamin Groven

The reference code for this position is 2024-018. Mention this reference code on your application form.

Requirements

Research Field
All
Education Level
Master Degree or equivalent
Skills/Qualifications

Required background: Chemistry, Physics, Nanoscience and Nanotechnology, Materials Science and Engineering, Chemical Engineering

Languages
ENGLISH
Level
Excellent

Additional Information

Selection process
  • Read the PhD Admission Requirements
  • Choose your topics and look up the reference codes (2023-001). You can apply for maximum 3 projects in total.
  • Collect your documents in pdf format:
    • Download and complete the motivation letter
    • Resume
    • Bachelor's degree and transcripts
    • Master's degree and transcripts

      If you have not finished your master program yet, you can submit your degree when you graduate. Do submit your master examination results available at the time of application.
    • Proof of your English language proficiency (refer to the PhD Admission Requirements for details)
    • GRE score (refer to the PhD Admission Requirements for details)
    • Ask two referees to fill out the evaluation form for you and have them send their input to phd@imec.be before the deadline (15 April 2023 or 15 December 2023). The letters of recommendation are confidential and are an essential part of your application. We will not be able to process your application without the evaluation forms so it is important that you contact your referees in time.
Additional comments

General information

There are two application windows:

  • From 15 March until 15 April
  • From 15 October until 15 December



Imec itself is not giving PhD degrees but acts as a host research institute for PhD and postdoc research in collaboration with 5 Flemish universities: KU Leuven, UGent, VUBrussel, UAntwerpen, UHasselt. Imec has also signed dual degree PhD agreements with Flemish and international universities. Both engineers and scientists can apply because of the multidisciplinary character of our research. PhDs get supported by professors of both national and international universities, all of them experts in their domains.

Imec has a dual degree agreement with different universities.

If you have more questions after reading the information below, contact phd@imec.be.

Imec the Netherlands is also looking for PhD students. If interested, go check the opportunities.

Website for additional job details

Work Location(s)

Number of offers available
1
Company/Institute
imec
Country
Belgium
City
Leuven
Geofield

Contact

City
Leuven
Website
Street
Kapeldreef 75
Postal Code
3001
E-Mail
jobs@imec.be