

Department of Science & Technology Government of India

PHOTO-IRRADIATION AND ADSORPTION BASED NOVEL INNOVATIONS FOR WATER-TREATMENT

Rita S Dhodapkar

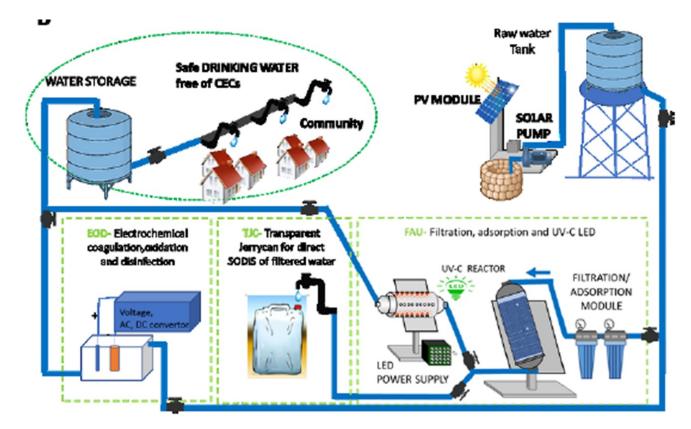
Kevin McGuigan

EU-India Water Tech Event 29 January 2024

PANIWATER OBJECTIVES

PANIWATER aims to develop, deploy and validate, six prototype technologies for the removal of contaminants of emerging concern from wastewater and drinking water.

List of partners and technologies


	Beneficiary	Technology	Country
1	Royal College of Surgeons in Ireland	TJC	Ireland (IE)
2	CSIR National Environmental Engineering Research Institute	MFR, SPPP, PES TJC	India (IN)
3	University Rey Juan Carlos	TJC	Spain (ES)
4	Birla Institute of Technology & Science, Pilani, K Birla Goa Campus	FAU	India (IN)
5	Maynooth University	TJC FAU	Ireland (IE)
6	Society for Development Alternatives	TJC MFR	India (IN)
7	INNOVA SRL	Innovation management	Italy (IT)
8	KWALITY Photonics P LTD	FAU	India (IN)
9	CIEMAT-Plataforma Solar de Almeria	SPPP	Spain (ES)
10	Affordable Water Solutions	EOD	India (IN)
11	University of Cyprus	SPPP	Cyprus (CY)
12	University of Ulster	PES	United Kingdom (UK)
13	Institute of Technology Sligo	TJC	Ireland (IE)
14	AQUASOIL SRL	MFR	Italy (IT)
15	Università del Salento	MFR	Italy (IT)
16	New University of Buckinghamshire	TJC	United Kingdom (UK)
17	University of Santiago de Compostela	TJC	Spain (ES)
18	Society for Technology & Action for Rural Advancement	SPPP, FAU	India (IN)

Drinking water technologies

Design and evaluation of:

- a) A solar photovoltaic powered system, which combines filtration, adsorption and UVC LED processes (FAU) for drinking water purification with 300 L/h capacity for periurban communities with drinking water accessibility and quality challenges.
- b) A 20-L UV transparent jerrycan (TJC) for solar water disinfection (SODIS) at household level for rural communities in severe drinking water scarce challenged areas.
- c) A solar powered multi contaminant water purification plant for rural community that combines electro coagulation, oxidation and disinfection (EOD) to meet water quality challenges and treats geogenic and microbial contaminants.

PANI WATER पानी PANI - FAU rototype Validation wate UV Treated water (240 LPH) Ammercial Product 10L water tank

- UVC LED (276 nm) Capable to work under submersible condition & rapid dissipation of heat (Patent filed),
- Requires no external cooling
- Solar powered UV LED kiosk (240-300 L/h) and UV LED wall mount unit (30 L/h).
- Long term stable irradiance of UVC
- Cost of fabrication : INR 0.13 million
- OPEX: INR 9 /m³
- Consumables: INR 200/6 8 months
- User acceptance high
- Meets Bacteriological Quality as per Drinking water standard IS 10500

Flow rate: 240 LPH Performance limits : Turbidity<5 NTU, TOC: <10 ppm

Novelty and Innovation

UVC LED System for Water Treatment: For the developed UV LED design- Application No. 202111046524-ABG/BITS-G/062021-14, Laxman Govind Raikar, Nupur Vijay Salve, Jemi Kamlesh Gandhi, Kopuri Vijaykumar Gupta, Halan Prakash

Wall Mount FAU TRL : 5

PANIWATER Wall mounted FAU, with UVC LED MRP: INR13,000 Operation cost : INR 6/m3 Cost of commercial UVC Smart Purifier~ 10,000 Commercial UVC LED ~ 26,000

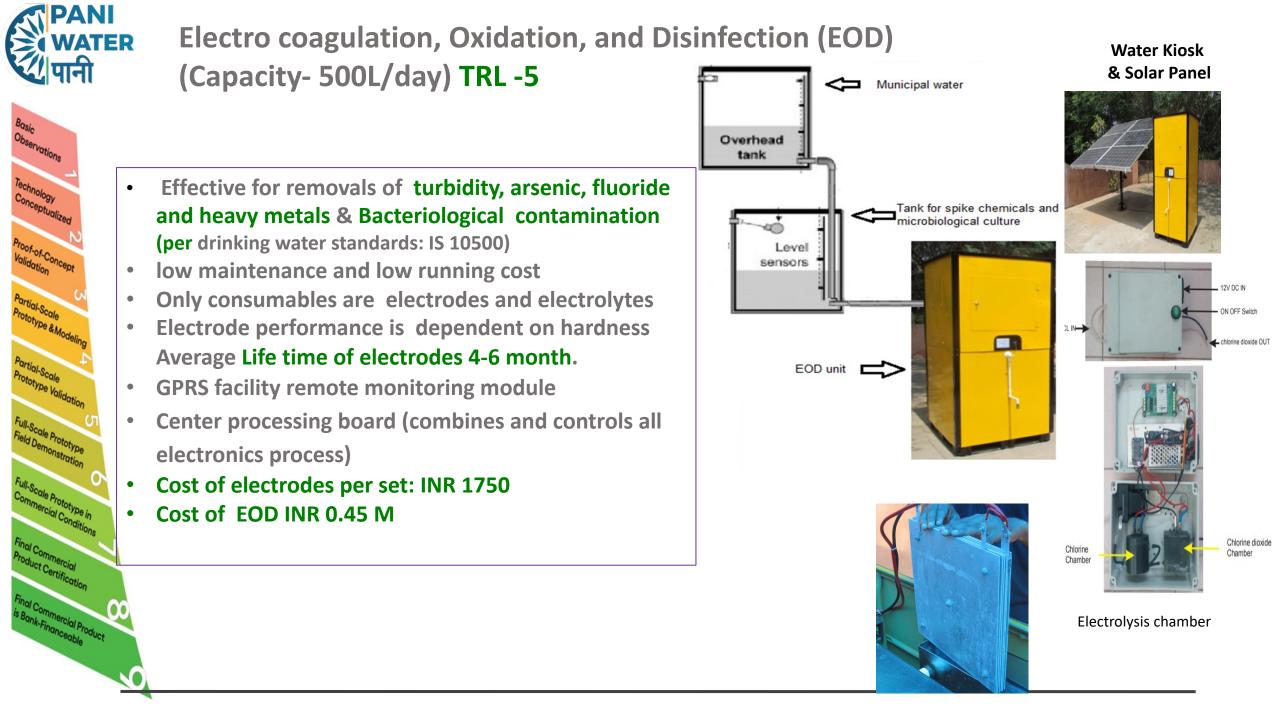
Meets Bacteriological Quality as per Drinking water standard IS 10500

Flow rate: 30 LPH Performance limits : Turbidity<5 NTU, TOC: <10 ppm

Market status

• Ready to market

UV LED status


- High life time 10k 20k h
- Mercury free
- Low maintenance

UV Hg lamp status

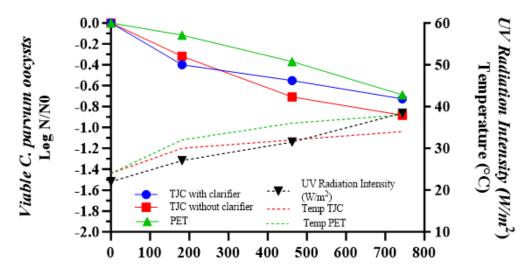
- Low life time -5k h
- Toxic mercury (100-200 mg in each lamp)
- High maintenance

Novelty and Innovation

UVC LED System for Water Treatment: For the developed UV LED design- Application No. 202111046524-ABG/BITS-G/062021-14, Laxman Govind Raikar, Nupur Vijay Salve, Jemi Kamlesh Gandhi, Kopuri Vijaykumar Gupta, Halan Prakash

10 L Transparent Jerrycan (TJC) for Solar Water Disinfection (SODIS) of Drinking Water

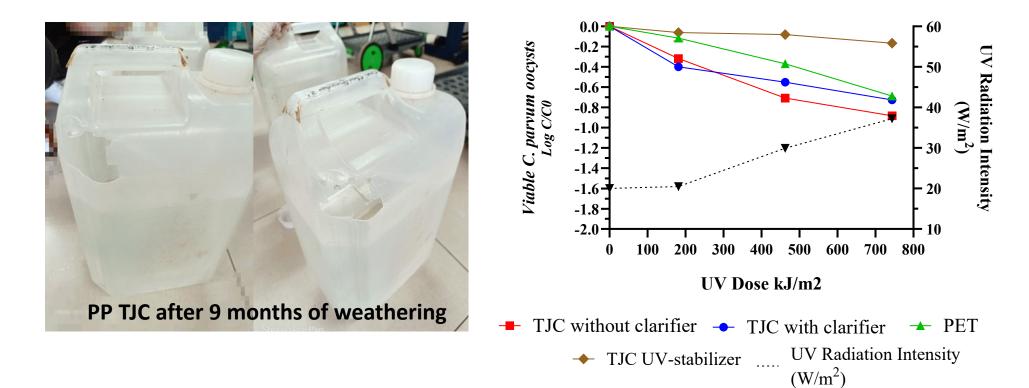
ELSEVIEF


Journal of Environmental Chemical Engineering 11 (2023) 11031

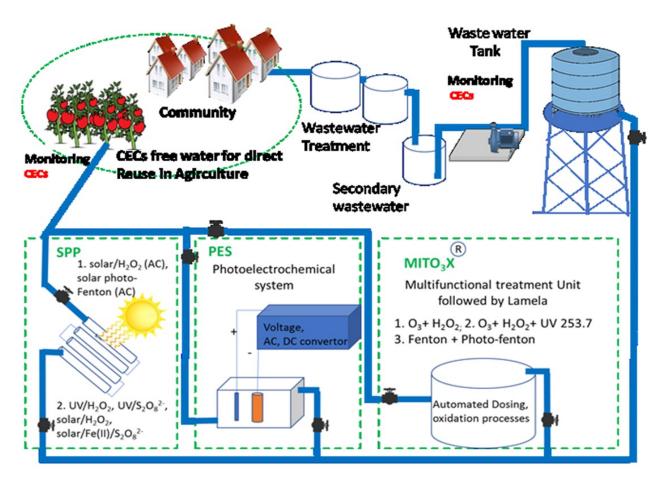
Good optical transparency is not an essential requirement for effective solar water disinfection (SODIS) containers

B. Sawant^{a,*,1}, M.J. Abeledo-Lameiro^{b,1}, Á. García Gil^c, S. Couso-Pérez^d, S. Sharma^e, U. Sethia^e, R. Marasini^f, L. Buck^f, M.I. Polo-López^b, I. Oller Alberola^b, J. Marugán^c, H. Gómez-Couso^{d,g}, E. Ares-Mazás^d, K. Vijaya Lakshmi^e, S. Pal^{h,i}, R. Dhodapkar^j, K.G. McGuigan^a

Joint EU/India publication


UV Dose kJ/m2

- Studies demonstrated that 10 L polypropylene TJCs were effective at inactivating waterborne pathogens.
- Good optical transparency is not necessary for SODIS efficacy. Translucency is sufficient
- Toxicity studies show leachates from plastic, not a concern
- Suitable for short term use in emergency/disaster situations



- Early prototypes exhibited good microbicidal efficacy, but poor environmental weathering durability.
- Later prototypes were unable to reach an acceptable compromise between efficacy & durability.
- Materials examined were PET, polypropylene (PP) and polylactic acid (PLA)
- 4 different prototype TJC designs were studied & tested. None were suitable for field demonstration
- Polypropylene is no longer considered suitable for long term SODIS TJC applications
- Rotary moulding with PLA or PMMA materials should be investigated

Fit-for-Purpose Wastewater Treatment

- Profiling and Quantification of Untreated and Conventionally Treated domestic wastewater for microcontaminants: Contaminant of Emerging Concern (CECs), Indicator pathogens, Antibiotic resistant Bacteria (ARB) and Antibiotic resistant Genes (ARB)
- Demonstration of Multifunctional reactor (MFR) (50 m³/d) to remove contaminants of emerging concern (CECs), pathogens, ARGs and ARBs from UWTPs effluents for sustainable direct reuse in agriculture.
- Design and demonstrate tertiary/ advanced level treatment to conventional systems by Solar Powered Photolytic Plant (2m³/d) photon-driven oxidation processes.
- Development of photo electrochemical systems (PES, solar driven PV integrated) for disinfection and decontamination and designed to remove organic matter, CECs and microorganisms, including antibiotics and ARB from secondary effluents of an urban wastewater treatment plant at pilot scale with focus on costs minimization.

Presence of Emerging contaminants in Sewage Treatment Plants

- Data on the occurrence of contaminants of emerging concerns (CECs) such as pharmaceuticals and personal care products (PPCPs) and antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in sewage is scarce in Indian perspective.
- A quantitative contamination profiling of selected PPCPs and antibiotic resistance in untreated and biologically-treated • sewage from sewage treatment plants, located in northern and central part of India.
- CECs were detected both in untreated and treated samples $(0.4 1340 \mu g/L)$ ٠
- 65 Pharmaceuticals, 14 Antibiotic Residues, 20 Pesticides, 3 Sweeteners identified in treated wastewaters from WWTP effluents and Irrigation canals
- Treated effluents cater resistant bacteria to commonly used antibiotics
- ARG copies identified in effluent and resistance genes persist. •
- The results obtained in this study help evaluate health and ecological risks associated with the presence of CECs in treated • sewage used for irrigation and frame future policies

Profiling of emerging contaminants and antibiotic resistance in sewage treatment plants: An Indian perspective

Priyam Saxena ^{a,1}, Isha Hiwrale ^{a,1}, Sanchita Das ^{a,b,1}, Varun Shukla ^a, Lakshay Tyagi ^a, Sukdeb Pal ^{c,d,**}, Nishant Dafale ^{b,d,*}, Rita Dhodapkar ^{a,d,***}

check for updates

One or two samples may also be tested for emerging contaminants involving presence of pesticides, personal care products and antibiotics etc. as these are becoming important in future treatment processes. Such tests shall provide a good baseline data). https://nmcg.nic.in/ 2018

Basic

Technology

Conceptuali

roof-of-Concept

alidation

artial-Scale

Partial-Scale

Prototype Valida

Scale Prototype eld Demonstration

Full-Scale Prototype in

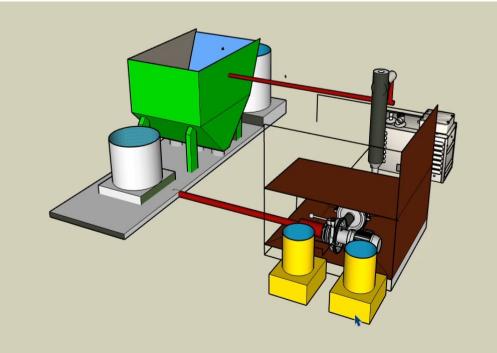
Inal Commercial

oduct Certification

Inal Commercial Product is Bank-Financeable

ommercial Condition

rototype & Mode


Multi functional Reactor : 50m³/day TRL: 6

- ✓ Dual step multifunctional reactor Combination of optimized physicochemical treatment & Advanced **Oxidation Process**
- ✓ Unique Fluid dynamics and residence time allows complete mixing of effluent with oxidants
- \checkmark Full utilization of oxidants with optimized reaction times
- ✓ Minimum maintenance, low electricity consumption and reduced sludge volume

□ Innovation

Rapid mixing under high-pressure reduces consumption of reagents Allows simultaneous use of liquid and gaseous reagents Low footprint **Reduced operational cost** Can be retrofitted with wastewater treatment systems

Accurate dosing with appropriate sensors can be integrated

• MITO3X technology

Integration with UV photoreactor out ozone (gaseous) H₂O₂ (liquid) MULTIPLE INJECTION PORTS

It allows simultaneous dosage of multiple treatment agents in multiple phases (gas/liquid/solids)

It achieves high mixing rates (G>100,000 s⁻¹) which enhances mass transfer considerably

It can be easily integrated in existing plants due to its small footprint

It has been proven at full scale for tertiary treatment

See: <u>https://www.youtube.com/watch?v=QvLdD_3MZlk&t=47s</u>

Demo Unit: Sewage treatment plant Vayusena Nagar, Air force Maintenance Command, Nagpur

Equalisation Tank

MBBR unit

Dual Media Filtration

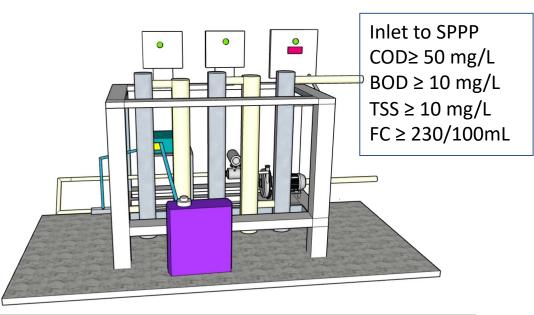
Inlet to MFR $COD \le 50 \text{ mg/L}$ $BOD \le 10 \text{ mg/L}$ $TSS \le 10 \text{ mg/L}$ $FC \le 230/100 \text{mL}$

- Capital cost for system integration INR 0.25 Million / 50m3/day
- Capital cost MITO3X: 0.46 Million Euros (~ INR 4.1 Cr)
- Operational cost 1.5L /Year
- Revenue generation stems through recovery and reuse of water resource

Irrigation Grade Water Resource for Reuse

Solar Powered Photolytic Plant : 2m³/day TRL 6

Basic Observations Technology Conceptualized Proof-of-Concept Validation Partial-Scale Prototype & Modeling Partial-Scale Prototype Validation Full-Scale Prototype 6 Field Demonstration Full-Scale Prototype in Commercial Conditions


Final Commercial Product Certification

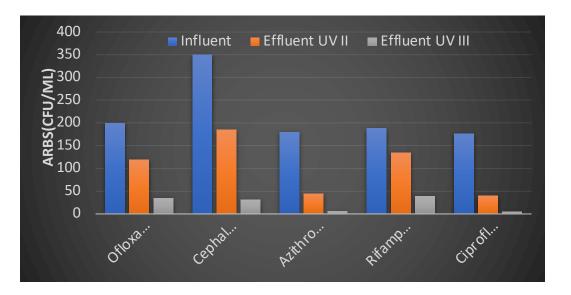
Final Commercial Product

s Bank-Financeable

Demonstration Site : Bhandewadi WWTP at Nagpur Technology tested both in India and EU

- \checkmark Process Optimisation for achieving CECs maximum removal of including **ARGs & ARBs**
- **Controlled dosing of per-oxidant** \checkmark
- Serpentine **Up-flow** design \checkmark ensures maximum exposure to UVC to achieve optimum performance
- **Continuous mode of operation** \checkmark

Solar Powered Photolytic Plant : 2m³/day TRL 6


Technology tested both in India and Spain

≥ 80% Total CECs removals

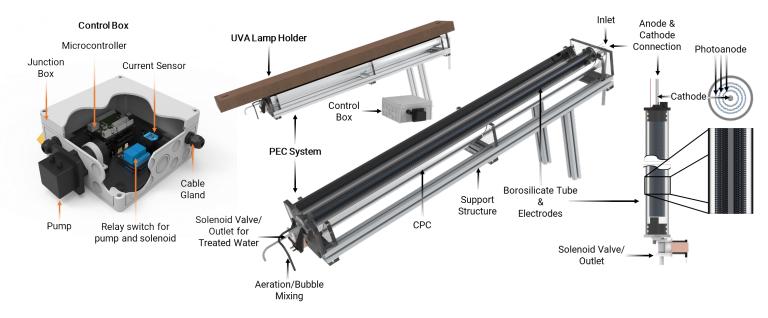
Resistance against ciprofloxacin and azithromycin reduced significantly after UV treatment

Decrease in the count of indicator bacterial load observed in effluent after passing through optimized UV-C lamps.

The qPCR results show a decrease in the number of ARG copies in effluent, resistance genes are still present

ALISATION (%)				
LISAT	UV Irradiation - 28 mW/m2	42 mW/m2		
SMX+TMP	61.93	86.03		
BPA	83.93	54.29		
17-Alpha	100	100		
Estrone	100	100		
CBZ	27.44	69.89		
PRO	28.08	100		
TEST	3.24	61.2		

SMX+TMP 🔳 BPA 🗖 17-Alpha 🗖 Estrone 🔳 CBZ 🗖 PRO 📕 TEST



@ Demonstration Site, Bhandewadi WWTP, Nagpur

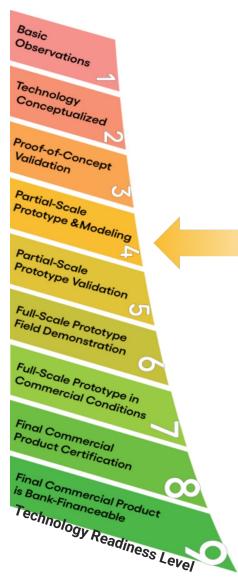
Photoelectrocatalysis Water Treatment

Automated PEC Prototype

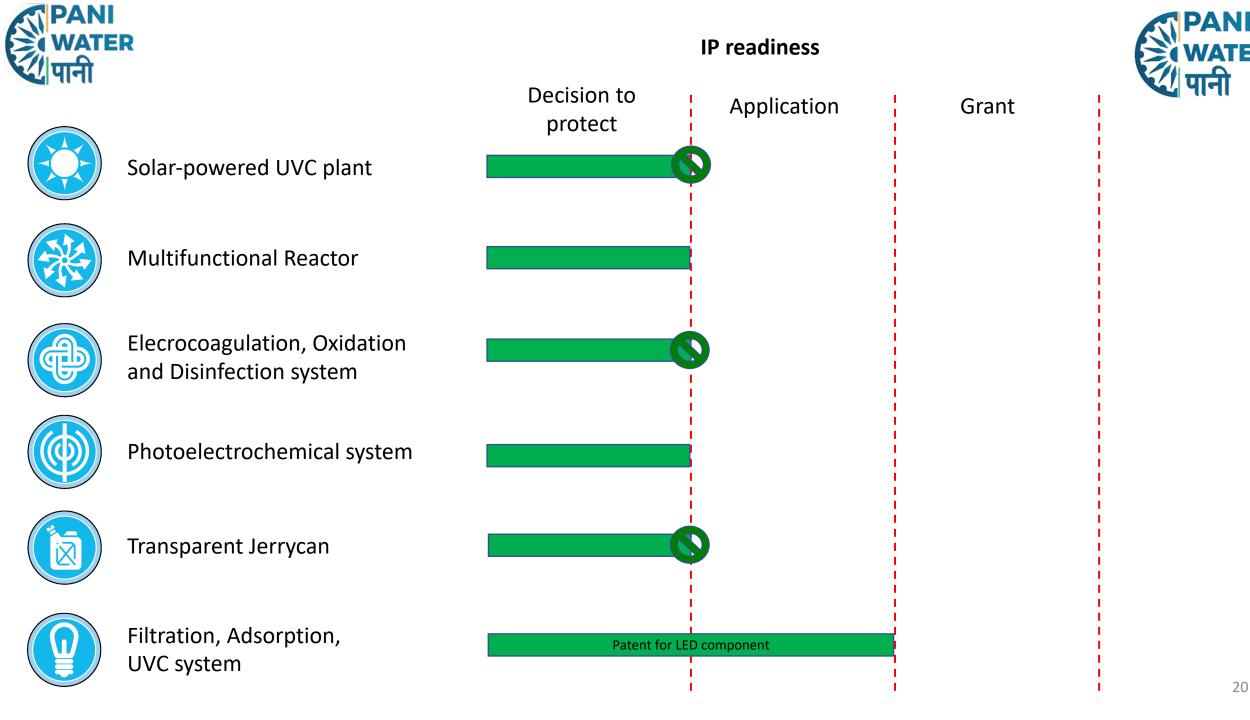
Advantages of Photoelectrocatalysis Water Treatment

- Generate oxidating agents that work against microorganisms and chemical pollutants that current treatment technologies cannot remove
- Doesn't require the addition of chemicals
- Can operate at lower current and voltages, lower energy consumption

Photoelectrocatalysis Water Treatment


Currently, photoelectrocatalysis is at TRL 4 technology, with pilot scale studies conducted in CSIR-NEERI in partnership with Ulster University, UK

More work is needed to evaluate the lifespan of the system and thus the effective cost per litre, as well as quality assurance and automation which is currently in development



Technology Readiness

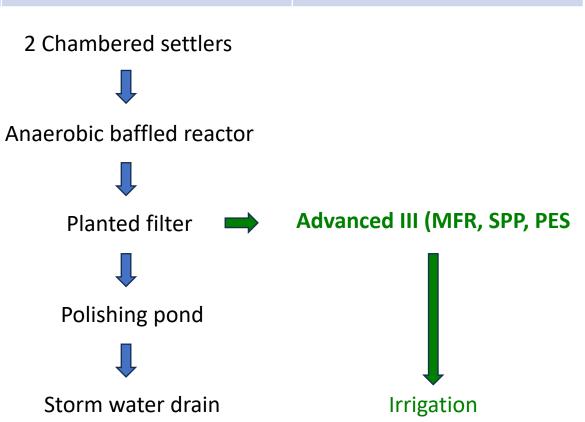
	Prototype (TRL 4)	Lab validation (TRL 5)	Field demo (TRL 6)
Solar-powered UVC plant			EU + India
Multifunctional Reactor			EU + India
Elecrocoagulation, Oxidation and Disinfection system			India
Photoelectrochemical system		India (o	ngoing)
Transparent Jerrycan	ſ►	Design reiteration	India
Filtration, Adsorption, UVC system			India

Market readiness

	Product dossier	Cost analysis	Stakeholder engagement	२८८ पाना
Solar-powered UVC plant	Performance & SOP	CapEX / OpEX INR	Manufacturer End-user	Distributor
Multifunctional Reactor	Performance & SOP	CapEX / OpEX	Manufacturer End-user	Distributor
Elecrocoagulation, Oxidation and Disinfection system	Performance & SOP	CapEX / OpEX INR	Manufacturer End-user	Distributor
Photoelectrochemical system	Performance & SOP	CapEX / OpEX INR	Manufacturer End-user	Distributor
Transparent Jerrycan	Performance & SOP	CapEX / OpEX INR	Manufacturer End-users	Distributor
Filtration, Adsorption, UVC system	Performance & SOP	CapEX / OpEX	Manufacturer End-users	Distributor

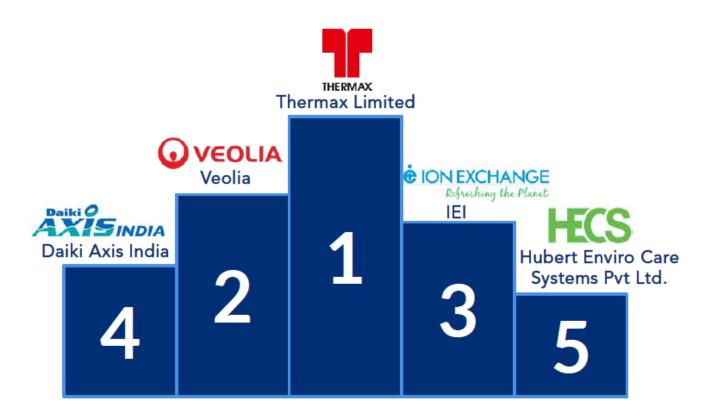
USD 553.36 million	USD 865.27 million
India Market Size	India Market Size
in	in
2024	2029
6.64%	9.35%
CAGR	CAGR
(2018-2023)	(2023-2028)

Thank You



- Existing decentralised systems lacking advanced tetiary treatment

	CaPEX	OpEX (1 year)	Capacity
Bankers Colony, Nhuj,	15 lakhs	1.5 Lakhs	30 m ³ / day
Gujarat	19,000 USD	1,900 USD	



Market Entry points – Wastewater tech

- Partnership with major players (IP Transfer)

DECENTRALIZED DRINKING WATER AND WASTEWATER TREATMENT MARKET, RANKING, BY TOP PLAYERS, INDIA, 2022

- Through international, national and state outreach initiatives

Examples

Case studies on best practices adopted by states

Case study 1: Community Managed Water Supply Programme: Bringing drinking water to the doorsteps of people in rural Gujarat

Overview

Gujarat's rural water supply programme, led by the state's Water and Sanitation Management Organisation (WASMO), aims to supply the village community with adequate, regular and safe water through household-level tap water connectivity, including households of people from backward communities. The programme strives to build a sustainable model through building capacity of village communities and empowering them to manage water resources themselves. The programme is based on a unique cost-sharing model, where the community partially shares the cost, owns the drinking water supply assets, and holds the operation and maintenance responsibilities.

As a result of this programme, Gujarat has achieved a 100% score in the 'Rural drinking water' theme of the Water Index, implying that it provides clean water to all of its ~35 million rural residents⁵⁷.

Initiatives and organisations

- Naandi Fundation
- Water for the people
- Sarvajal
- Jal Jevaan mission
- Water.org
- Gram Vikas
- Safe Water Network
- DROP Foundation
- Swajal
- Drop4Drop
- Elixir Foundation
- Charity water
- WASMO

- Partnership with major players (IP Transfer)

National

- Thermax India
- Hindustan Dorr-Oliver Limited
- SFC Environmental Technologies Private Ltd
- Ion Exchange India
- Voltas
- VATech Wabag
- Sahrpoorji Pallonji
- Kent RO
- Hinudstan UNILEVER

International

- GE Water & Process Technologies
- W.O.G. Technologies
- Siemens Water Technologies
- Toshiba Water Solutions
- Veolia

- Existing decentralised systems lacking advanced tetiary treatment

	CaPEX	OpEX (1 year)	Capacity
Bankers Colony, Nhuj,	15 lakhs	1.5 Lakhs	30 m³ / day
Gujarat	19,000 USD	1,900 USD	
Kulgaon-Badlapur, District Thane, Maharashtra	4 lakhs 5,400 USD	0.7 lakhs 800 USD	7 m³ / day
Camphill, Bannerghatta	5.5 lakhs	0.8 lakhs	9 m³ / day
Road, Bangalore	7,000 USD	900 USD	
Delhi Jal Board,	16 Lakhs	1.5 Lakhs	8 m³ / day
Varunalaya, New Delhi	20,300 USD	1,900 USD	

Examples