Meet my Lab x JFS

Clean, Accessible and Secure Energy Supply

Wednesday, 20 March 2024 9:00-10:45am CET / 15:00 - 16:45 Jakarta

DR HANA CHEN WEI JUN

RESEARCH HEAD - SUSTAINABLE COMMUNITY DEVELOPMENT, DEPARTMENT OF COMMUNITY MEDICINE INTERNATIONAL MEDICAL SCHOOL MANAGEMENT AND SCIENCE UNIVERSITY, MALAYSIA

RESEARCH FOCUS:

ELECTROGENIC BACTERIAL BATTERY FOR SUSTAINABLE BIOENERGY GENERATION

Funded by

Slobal Service Facility

support service funded by

Funded by

Our Team

Dr. Hana Chen Wei Jun Public Health Expert

Research Head, Sustainable Community Development, International Medical School, Management and Science University

Role: Researcher

Prof. Dr. Abdullah Yahya Al-Mahdi Microbiologist

Professor of Microbiologist, International Medical School, Management and Science University

Role: Supervisor

AP Dr. Mohd Faez Abobakr **Public Health Expert**

Associate Professor of Public Health, International Medical School, Management and Science University

Role: Co-Supervisor

Dr. Nurul Akmal Jamaludin Physiologist

Faculty Research Head, International Medical School, Management and Science University

Role: Co-Supervisor

Institutional and Lab Background

Management and Science University (MSU)

- Leading university in Southeast Asia.
- Over 2,000 industry partners for industryembedded research

QS Star: 5 Star

QS Southeast Asia: Top 30 QS Asia University Rankings: Top 200 QS Top 50 Universities Under 50: Top 100 THE Impact Ranking 2023: 401-601

Central Research Lab

- High performance liquid chromatography
 Gas chromatography
- Spectrophotometer
- Nanophotometer
- ✓ Fourier transform infrared
- ✓ Ultrasonic homogenizer
- ✓ ELISA microplate reader
- ✓ Electrophoresis equipment
- Lyophilization equipment

Microbiology Lab

- ✓ Real time polymerase chain reaction
- ✓ Laminar flow
- ✓ Microscope
- ✓ Incubator
- ✓ Centrifuge
- ✓ Water bath
- ✓ Oven
- ✓ Autoclave
- ✓ Storage fridge & refrigerator

Funded by

Project at Glance

What?

- The development of Electrogenic Bacterial Battery (EBB) for sustainable bioenergy generation

- Electrogenic Bacterial Battery (EBB):

is a bioelectrical device designed to optimize bacterial electricity production by using electroactive bacteria that can transfer electrons to external electrodes.

Why?

 Existing gap of fossil fuel sources: unsustainable, climate change, environmental degradation.
 Existing gap of Microbial Fuel Cell (MFC):
 ↓ voltage, ↑ cost, bacterial viability challenges

How?

- Isolation and identification of bacteria
- Assembly of a new EBB device

When?

- Year 1: Isolation and screening of the bacteria; EBB design
- Year 2: Identification of specific bacteria strains; EBB production

Who?

- Team for the Medical Faculty and Engineering Faculty

Where?

- Lab, Management and Science University

Funded by

Principle of Electrogenic Bacterial Battery (EBB):

The EBB utilizes electroactive bacteria capable of transferring electrons from the Electron Transport Chain (ETC) to external electrodes, allowing for electricity generation

Electron Transport Chain - ADP+Pi 3H⁺-ATPase cytoplasm chrome 1/202+2H+ 2H⁺ $2H^+$ succinate dehydrogenase H₂O $\frac{1}{2}O_2 + 2H^+$ electrode chrom FADH₂) 2HUO FAD fumarate sucinate UOH JOH e-) $NAD^+ + H^+$ NADH ADH e-) dehydro periplasm outer membrane 4H⁺ inner membrane

Bacterial Battery

Why EBB?

A collaboration between

SOUTHEAST ASIA-EUROPE JOINT FUNDING SCHEME FOR RESEARCH AND INNOVATION

Funded by

Novelty and Research Gap Bioelectricity Generation By Electrogenic Bacterial Battery

The development of a novel bioenergy device by using bacterial genera that are part of the human microbiota to generate electricity for the first time.

- ✓ eco-friendly, renewable and sustainable
- ✓ diversity
- ✓ accessible
- ✓ easy handling
- ✓ smaller size but higher voltage
- ✓ lower cost
- ✓ viability can be controlled
- ✓ durability can be controlled

Funded by

Objectives

To generate electricity from bacterial genera that are part of the human microbiota as a new sustainable bioenergy source

- To isolate and identify bacteria with the highest electricity generation
- ✓ To optimize different parameters for bioelectricity generation
- To enhance the structure and design of the EBB for higher voltage
- To develop a novel bioenergy device by using bacterial genera that are part of the human microbiota

Funded by

Conceptual Framework

Development of EBB

Glass model of EBB

Final EBB model

EUCAXESS

SOUTHEAST ASIA-EUROPE JOINT FUNDING SCHEME FOR RESEARCH AND INNOVATION

Gantt Chart

Task	2024								2025															
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
Proposal writing																								
Proposal submission to RMC																								
Approval by RMC																								
Assembly and development of the EBB																								
Review paper publication																								
Samples collection																								
Electricity generation																								
Bacterial Identification																								
Data analysis																								
Report writing and data presentation																								
Final Research project presentation																								
Second paper Publication																								
Final report submission																								

Funded by

Research Budget (Malaysian Ringgit / RM)

Budget Type		Details	Year 1	Year 2	Grand Total		
Travelling and Transportation		 Sampling and cultures Travelling allowances 	15,000	10,000	25,000		
Research Materials and Supplies	5	 1) Electrogenic bacterial battery 2) Isolation of the bacteria 3) Identification of the bacteria 4) Voltage measurement 5) Storage of the bacteria 	150,000 20,000	70,000 20,000 20,000	280,000		
Maintenance and Minor Repair	Services	Electrogenic bacterial battery	10,000	10,000	20,000		
Accessories and Equipment		 1) Lab autoclave 2) Laminar flow 3) Incubators 4) Water bath 5) Voltage meter 6) pH meter 7) Glassware 	30,000	10,000	40,000		
Statistical analysis		1) Expert consultation 2) SPSS software	10,000	15,000	25,000		
Publication & conference		 Review paper Original Article Conferences 	20,000	20,000 15,000	55,000		
		Total	255,000	190,000	445,000 (RM)		
	A collaboration between	A-EUROPE CHEME FOR INOVATION		management &			

Possible Joint Research Project Integrated Approach to Enhance Bioelectricity Generation in EBB

Experts Needed and Potential Roles:

Microbiologist, physiologist:

Characterize electrogenic bacteria, physiological analyses Genetic engineer:

Enhance bacterial electron transfer pathways and metabolic activities Electrochemical engineer:

Electrochemical analyses, electrode optimization, electron mediation system Bioprocess engineer, materials science engineer: Design and optimization of EBB and its components

Future scope:

- Industrial-scale EBB design
- Performance, stability, and durability evaluation
- Viability evaluation

Funded by

Techno-economic analyses

Contact Us

Dr. Hana Chen

hana_chen@msu.edu.my

Prof. Dr. Abdullah abdullah_yahya@msu.edu.my

AP Dr. Mohd Faez

mohd_faez@msu.edu.my

Dr. Nurul Akmal

nurulakmal_jamaludin@msu.edu.my

Global Service Facility, a support service funded by the European Commission

Warm Welcome to Our Lab

Thank you

SOUTHEAST ASIA-EUROPE

RESEARCH AND INNOVATION

a support service funded by the

