

Horizon 2020 European Union funding for Research & Innovation

STRATEGIC PLANNING FOR WATER RESOURCES, DEVELOPMENT AND IMPLEMENTATION OF NOVEL BIOTECHNICAL TREATMENT SOLUTIONS AND GOOD PRACTICES (SPRING)

Coordinator (EU)

Prof. Rajnish Kaur Calay

University of Tromsø, Norway Timeline: August 2019 - July 2024 **Coordinator (India)**

Prof. Sanjukta Patra

Indian Institute of Technology Guwahati, Assam Timeline: May 14, 2020 - May 13, 2024

Review Meeting: January 29, 2024

Sources of Water Pollution

- Urbanization
- Deforestation
- Industrial effluents
- Social and religious practices
- Use of detergents and fertilizers
- Agricultural run-offs
- Use of insecticides and pesticides

Water Pollution: An Epidemic

- Aquatic life affected
- Huge impact on the food chain
- Outbreak of infectious diseases

Integrated water resource management for clean and safe water supply: SPRING

SPRING PARTNERS

INDIAN OCEAN

INTERACTION BETWEEN WPs AND PARTNERS

WP1: IITG, IITKGP, IITBHU, SRKRC, DYP, ELI, BMC, PAL, UIT, UP, NOR, FWF, INESC, ENV

WP2: SRKRC, IITBHU, DYP, PAL, UiT, UP, ENV

WP3: IITG, IITKGP, IITBHU, ELI, SRKRC

WP4: DYP, UP, UiT, FWF, NOR

WP5: IITG, IITKGP, IITBHU, SRKRC, DYP, ELI, BMC, PAL, UiT, NOR, **INESC**

WP6: IITG, IITKGP, IITBHU, SRKRC, DYP, ELI, BMC, PAL, UiT, NOR, INESC, UP, FWF

WP7: IITG, IITKGP, IITBHU, SRKRC, DYP, ELI, BMC, PAL, UiT, UP, NOR, FWF, INESC, ENV

WP8: IITG, IITKGP, IITBHU, SRKRC, DYP, ELI, BMC, PAL, UIT, UP, NOR, FWF, INESC, ENV

SPRING OBJECTIVES

mid Ganga river Basin

near Varanasi)

WORK PROGRESS

SO1: Geo spatial analysis with respect to land use/land coverage and water resources for identification of point and non-point sources of pollution of water bodies using integrated remote sensing (river Godavari delta and river Ganga near Varanasi are the two selected test sites).

SO2: Physicochemical and biochemical analysis of water samples collected from different point and non-point sources of pollution for assessing the heterogeneity of pollutants.

THE GANGA AND GODAVARI RIVER IN INDIA: AN OVERVIEW

- **River Ganga** is the Himalayan river and it is perennial.
- The Ganga is the 20th longest river in Asia and the 41st longest in the world (Philips World Atlas).
- The length of the Ganga is over 2500 km.
- The Ganges River runs through northern India and is sacred to people.
- The Ganges River originates in the Himalaya Mountains at Gomukh, the terminus of the Gongotri Glacier.
- **River Godavari** is the peninsular river and it is seasonal.
- The length of Godavari is about 1500 km.
- It is the largest peninsular river.
- It is originated from the slopes of the Western Ghats in the Nasik district of Maharashtra.
- Anthropogenic contributions:
- Rapid population growth
- Agricultural development
- Urbanisation
- Industrialisation
- Untreated discharges

WHY GODAVARI WESTERN DELTA SELECTED AS STUDY AREA?

Present day Western Godavari delta is carved out of the old Godavari district (during the British Rule) in the year 1925

Deltaic portion of West Godavari district of Andhra Pradesh state

The area under study covers the Delta portion of West Godavari which itself comprises about one third of the area of the entire Godavari Delta System.

*Entire study area spreads over an area of 7742 km2 with population density as high as 491 persons per km2.

Pollution scenarios

- Upper reaches of river polluted with untreated sewage and industrial effluents.
- Intensive agriculture and aquaculture
- ➢ 63 Major Urban habitats
- Major industries in the basin are Thermal, Pharma, Food processing, Distilleries, Sugar processing, Paper & pulp and shrimp processing.
- Approximately 1000 MLD sewage is discharged into the river.

Northern latitudes 16°19'06" and 16°56'10" and eastern longitudes 81°18'25" and 81°52'45"

SL No	Land Use /	Land Cover	Area (so km)	Percentage (%)	
51. 140.	Level 1	Level 2	/ li cu (oqilili)		
1.	Built-Up Land	Settlements	168.962	6.90	
		Industry	3.329	0.14	
2.	Agriculture	Crop Land	1318.550	53.83	
		Plantations	101.301	4.14	
		Fallow Land	2.117	0.09	
3.	Forest	Mangroves	0.417	0.02	
4.	Wastelands	Water-Logged	3.980	0.16	
5.	Water Bodies	River	3.063	0.13	
		Canal	6.215	0.25	
		Drain	10.444	0.43	
		Tanks	2.148	0.09	
6.	Others	Aquaculture	752.600	30.72	
		Poultry	1.211	0.05	
		Saltpans	3.632	0.15	

Sl.no	Drain name	Length (km)	DrainsCanals			Canals —
1	Yanamadurru drain	64.88	Ι.			
2	Gosthanadhi drain	38.11		Sl.no	Canal name	Length (km)
3	Nakkala drain	40.95		1	Eluru canal	32.47
4	Bhaggeswaram drain	23.27		2	Narsapur canal	66.05
5	Gonteru drain	57.66		3	Bank canal	36.48
6	Old yenamadurru drain	15.49			Gosthani-Velpuru	52.00
7	Bondada drain	23.66		4	canal	53.89
8	Rayalam drain	7.74		5	Attili canal	27.86
9	Rudrayakodu drain	22.35		6	Undi canal	47.82
10	Gunupudi drain	21.0		7	Venkayya-Vayyeru	52 / 7 9
11	Kaza drain	24.31		/	canal	52.47 0

OVERVIEW OF WORK FLOW

>

 \geq

 \geq

>

DELINEATION OF CANAL COMMANDS

Significance

Canal commands are overlaid on settlement maps generated along with the industrial locations identified through both geotechnical methods and ground truthing. This aids further in the identification of point and non-point of sources pollution.

DELINEATION OF DRAIN CATCHMENTS

POINT AND NON-POINT SOURCES OF POLLUTION

Point

- Rice Mills, Sugar Mills, Poultry Farms, Fish
 Packing Sheds, Shrimp Packing Units, Pesticide
 Factories
- Confluence points of drains with canals,
- Confluence points of minor drains with major drains, Outlets of water from aquaculture ponds into channels
- > Outfall points of major drains into rivers, etc.

Non-point

- Agriculture abutting the flood banks of the channels
- > Aquaculture abutting the flood banks of the channels
- > Settlements along on the banks of canals
- Solid Waste Dumps on the canal bank
- Rainfall runoff from the flood banks, (especially over areas with open defecation by human beings)

SAMPLE COLLECTION LOCATION MAP

Τ<

HOT SPOTS / VULNERABLE LOCATIONS OF THE STUDY AREA

Number of HOTSPOTS identified: 30 On Canals: 18

On Drains: 12

S.No	Canal /Drain	Longitude	Latitude	Nearest
				Settlements
1	Anakoderu channel	81.5181	16.5613	Bhimavaram
2	Attili canal	81.6225	16.7098	Attili
3	Bank canal	81.8205	16.6680	Siddantham
4	Bank Canal	81.7833	16.7462	Khandavalli
5	Eluru canal	81.5462	16.8086	Tadepalligudem
6	Gosthanadi Velpuru canal	81.5792	16.5814	Bhimavaram
7	Gosthanadi Velpuru canal	81 6645	16 6544	Penumantra
8	Gosthanadi Velpuru canal	81 6755	16 7665	Chivatam
9	Gosthanadi Velpuru canal	81.5259	16.4969	Enamadurru
10	Narsapur canal	81.7320	16.5900	Kavitam
11	Narsapur Canal	81.7444	16.6672	Penugonda
12	Narsapur Canal	81.7169	16.5009	Palakollu
13	Narsapur Canal	81.7026	16.4460	Narsapur
14	Undi canal	81.5407	16.6584	Kondepudi
15	Undi canal	81.4709	16.5855	Undi
16	Venkayya Vayyeru canal	81.4636	16.7085	Ganapavaram
17	Venkayya Vayyeru canal	81.3961	16.5858	Akividu
18	Venkayya Vayyeru canal	81.5371	16.7484	Chilakampadu
19	Baggeswaram drain	81.7039	16.5811	Kavitam
20	Enamadurru drain	81.5372	16.5879	Palakoderu
21	Enamadurru drain	81.5876	16.7194	Komarru
22	Gosthanadi drain	81.6578	16.7139	Velpuru
23	Gonteru drain	81.6340	16.4820	Matsyapuri
24	Gonteru drain	81.6978	16.6356	Alamuru
25	Kaza drain	81 7236	16 4440	Navarasapuram
26	Nakkala drain	81 8156	16 4953	Vaddilanka
27		91 / 299	16 4035	Dongapindi
28		81 4024	16 4255	Modi
29		01.4024	16 3002	Losari
30		01.4/0/	16 3744	Kalinatnam
50	OF TOTERO OIU COUISE	01.0011	10.3/44	

Demonstration points

- Gosthanadi velpuru canal, Bhimavaram
- Eluru canal, Tadepalligudam
- Gonteru drain, Matysapuri

FINAL MAPS

WHY GANGA RIVER BASIN NEAR VARANASI SELECTED AS STUDY AREA?

Study Area Ganga River Basin (Near Varanasi)

- River Ganga near Varanasi is of significant social and religious importance.
- People from all over the country visit Varanasi to take a holy dip in the Ganga.
- In Varanasi, the Ganga flows from south to north.
- The city's name, Varanasi, is derived from the rivers Varuna and Assi.
- The core part of the city is located between these two rivers.
- River Varuna meets the Ganga in the north of the city, while river Assi meets it in the south.
- Ramnagar is an industrial area situated on the eastern bank of the Ganga.
- Ramnagar drain and river Assi, located upstream of the bathing ghats and the city, play a crucial role in determining the bathing water quality in the Ganga near Varanasi.

SETTLEMENT MAP

INDUSTRIAL LOCATIONS MAP

- The study area of Ganga basin near Varanasi is densely populated. There are approximately 597 settlements covering 189.06 sq.km.
- All settlements are connected with a network of National Highway/ State Highway/ Major and Minor district roads.
- Being natural drainage lines, majority of the settlements are situated in the catchment of the Varuna River and Assi River.
- Due to the heavy load of domestic sewage, river Assi is vividly called Assi Nala also.
- The majority of the settlements are situated in the catchment of the Varuna River.

- The total industrial area is approx. 5.05 sq.km. and it constitutes 0.83% of the study area.
- Agricultural produce processing units such as rice mills, sugar mills are mainly located in Varanasi city area.
- Ramnagar industrial area produces plastic materials, agricultural implements, electrical products, cement etc.
- Diesel Locomotive Works (DLW) situated in the catchment of river Assi is a production unit of Indian Railways.
- Brickwork manufacturing, industries of Food Corporation of India, BHEL etc. are in the study area.

LAND USE/LAND COVER MAP

S. No	Level 1	Level 2	Area (km ²)	% Area
1	Builtup Land	Settlements	114.978	19.162%
		Industrial Area	4.948	0.825%
2	Agricultural	Crop Land	278.397	46.396%
	Land	Plantations	143.900	23.982%
3	Wasteland	Waterlogged Area	0.003	0.001%
		Salt Affected Land	0.861	0.144%
		Gullied/ Ravenous Land	0.282	0.047%
		Fallow Land	10.943	1.824%
		Sandy Area	24.890	4.148%
4	Water Bodies	Rivers	19.350	3.225%
		Lakes/ Ponds/ Tanks	1.487	0.248%

- The land use/land cover categories in the area include Waterbodies, Sandy Area, Barren Land, Crop Land, Plantation and Settlements.
- > The cropland and plantation area are the most predominant land use classes covering nearly 70% of the study area.
- The urban / village settlements occupy substantial extents that amount to 20% of the total area, mostly confined to the left bank of the Ganga River.
- ➢ Historically, the 'holy' city has grown along the Western Banks of the river and all the bathing ghats are found on the same side.
- The 'trans-Ganga region of Varanasi which is on the Eastern bank of the river is witnessing the industrial expansion of the city. The LULC map is shown in Figure. The area distribution is detailed in Table.

DRAINAGE NETWORK MAP

- Near Varanasi, river Ganga provides major drainage line. Upstream of the city, Ramnagar drain joins from right hand side of the river. Around 3 km downstream of Ramnagar drain, Samne Ghat drain joins river Ganga from the left hand side.
- Further around 1.5km downstream, river Assi joins Ganga from the city side which is located on left bank of the river.
- ▶ River Varuna joins river Ganga around 7 km further downstream.
- Beyond Varanasi city limits, river Gomati is an important tributary of Ganga which meets around 35 km downstream from the confluence point of Varuna.
- Based on Digital Elevation Model (DEM) with 30 m resolution of SRTM data the natural drainage network of the study area has been prepared (Figure 5).
- > There are streams of 1st to 6th order. River Ganga is observed as 6th order stream and river Varuna is found to be a 5th order stream.
- Ramnagar drain and river Assi are broadly 2nd order streams. In addition there are several drains of 1st order which join to form higher order streams.
 18

Sampling locations and identification of pollution hotspots in the river Ganga near Varanasi

Sampling Locations in the Study Area

S. No.	Designation	Latitude	Longitude	Sampling Location
1	S1	25.20806	82.95603	Sampling point in Ganga River around 9km U/S of Ramnagar drain.
2	S2	25.24542	83.02977	Sampling point in Ganga River around 200 m U/S of confluence point with Ramnagar drain.
3	S3	25.24987	83.03281	Sampling point in Ramnagar drain around 200m U/S of the confluence point with Ganga River.
4	S4	25.25203	83.02857	Sampling point in Ganga River around 200m D/S of confluence point with Ramnagar drain.
5	S5	25.2822	83.01325	Sampling point in Ganga River around 200 m U/S of confluence point with Assi river.
6	S6	25.28642	83.01167	Sampling point in Ganga River around 200m D/S of confluence point with Assi river.
7	S7	25.2832	83.00634	Sampling point in Assi river around 200m U/S of the confluence point with Ganga River.
8	S8	25.28281	82.98503	Sampling point in Assi river around 3km U/S of the confluence point with Ganga River.
9	S9	25.27461	82.96649	Sampling point in Assi river around 5km U/S of the confluence point with Ganga River.
10	S10	25.32563	83.04455	Sampling point in Ganga River around 200m U/S of confluence point with Varuna river.
11	S11	25.32806	83.050321	Sampling point in Ganga River around 200m D/S of confluence point with Varuna river.
12	S12	25.33140	83.04336	Sampling point in Varuna river around 200m D/S of confluence point with Ganga River.
13	S13	25.34203	83.02268	Sampling point in Varuna river around 3km U/S of confluence point with Ganga River.
14	S14	25.34021	82.98016	Sampling point in Varuna river around 7km U/S of confluence point with Ganga River.
15	S15	25.42302	83.17514	Sampling point around 16km D/S of Varuna river.
16	S16	25.33055	82.94002	Sampling point in Varuna river around 16km U/S of confluence point with the Ganga River.

Sampling Locations in the Study Area

Total 16 water quality sampling sites

- 6 on Varuna
- 5 on Assi river
- 3 on Ramnagar drain
- 1 u/s and 1 d/s of Varanasi city

Identified hotspots in the river Ganga are

- 1. Confluence point of Ramnagar drain (S4, R)
- 2. Confluence point of River Assi (S6, L)
- 3. Confluence point of river Varuna (S11, L)

SPATIAL VARIATION OF WATER QUALITY INDEXES (WQI) IN THE GANGA RIVER NEAR VARANASI

Spatial variation of water quality indexes in the Ganga river near Varanasi in pre-monsoon seasons

During the pre-monsoon period in the Ganga River near Varanasi:

- Bathing water quality
- Good category from Shooltankeshwer to U/S of Ramnagar drain.
- Poor condition is observed from Ramnagar D/S to Assi U/S.
- Very poor condition is observed downstream of river Assi to Panchganga ghat.
- Drinking water source quality
- Good from Shooltankeshwer to U/S of Ramnagar drain
- Poor condition appears Ramnagar U/S to Assi D/S
- Very poor from downstream of River Assi to Panchganga ghat.
- For livestock use and irrigation purposes, the river water quality is generally good to excellent along the entire stretch of the river Ganga near Varanasi.

SPATIAL VARIATION OF WATER QUALITY INDEXES IN THE GANGA RIVER NEAR VARANASI

Spatial variation of water quality indexes in the Ganga river near Varanasi in post-monsoon seasons

During the post-monsoon period in the Ganga River near Varanasi:

- For bathing purposes
- Good category from Shooltankeshwer to Assi U/S.
- Poor category could be observed from D/S of Assi to Panchganga ghat.
- Drinking water source quality
- Good category from Shooltankeshwer to U/S of River Assi.
- D/S of River Assi to Panchganga ghat comes under poor category.
- Current raw water intake structure at Bhaidaini ghat D/S of river Assi is under very poor category in pre monsoon season and poor category in post monsoon season.
- For livestock use and irrigation purposes, the river water quality is generally good to excellent along the entire stretch.

UNDERSTANDING RIVER HEALTH CONDITION (RHC) THROUGH RIVER HEALTH INDEX (RHI): UNIQUE TOOL

• River Health Index (RHI) = [(OEB x W1) + (NT x W2) + (A x W3) + (MI x W4) + (F x W5)]

W1, W2, W3, W4 and W5 are weightages given to different groups.

- Scores of aquatic environment parameters divided into five indicator groups:
 - Organo-Electrolytic-Bacterial (OEB) group: (Comprising of EC, DO, BOD, COD and FC)
 - 2. Nutrients (NT) group: (Comprising NH3-N, TN and TP)
 - 3. Algae
 - 4. Macroinvertebrate and

RHC based on Indicator Group Score and RHI

River Health	Indicator Group	Score/	RHC	Colour Code
	RHI Score			
	>80		Excellent	Blue
Acceptable	70-80		Very Good	Green
	60-70		Good	Yellow
	50-60		Stressed	Orange
Poor	40-50		Over Stressed	Grey
	20-40		Critical	Red
	≤20		Sick/Dead	Black

Stressed' River Health Condition (RHC) of the river Ganga at upstream of Varanasi city (India)

5. Fishes

CONCLUSION

- 1. Thematic maps were created.
- 2. Point and non-point sources of pollutants were identified.
- 3. Pre- and post-monsoon season sample analyses were performed.
- 4. Pollution scenarios were integrated with thematic maps, and vulnerability maps were generated using geotechnical methods.
- 5. Hot spots were identified on canals and drains in the study areas (30 and 03 for river Godavari and ganga, respectively).
- 6. River Health Condition was determined.

Deliverable Reference No.	Deliverable Title
D2.4	Site Mapping
D3.1	Spatial Database
D3.2	Vulnerability Maps
D3.3	Database of Pollutants and Sludge Library

Identification of polluted sites and physicochemical analysis of water quality; development of initial water health maps of the sites using geospatial techniques: **TRL 4; Expected to reach TRL 6 (at the end of project tenure)**

SO3: Development of robust enzyme(s) systems for pollutant removal and wastewater treatment.

SO4: Scaling up of the enzyme systems for implementation and commercial exploitation.

ADVANCED BIO-OXIDATION: A GREEN PROCESS

THE ENZYME WORK HORSE

Reactive Oxygen Species

∙ <mark>⊘∷⊘</mark> ∙ _{Oxygen} O2	\dot{O} : \ddot{O} : Superoxide anion \dot{O}	Peroxide · O ₂ ⁻²
H:Ö:Ö:H	·ö:H	öH
Hydrogen Peroxide	Hydroxyl radical	Hydroxyl ion
H_2O_2	·OH	OH

Name of ROS producing enzyme	Name of Organism	Taxonomy	Uniprot ID
Xanthine Oxidase	Homo sapiens	Mammals	P47989
Xanthine Dehydrogenase	Blastobotrys Adeninivorans	Yeast	R4ZGN4
Choline Oxidase	Arthrobacter globiformis	Bacteria	Q7X2H8
Glucose Oxidase	Aspergillus niger	Fungi	P13006
Galactose Oxidase	Gibberella zeae	Fungi	P0CS93
Pyranose Oxidase	Phanerochaete chrysosporium	Fungi	Q6QWR1
Glycine Oxidase	Bacillus subtilis	Bacteria	O31616
Pyruvate oxidase	Lactobacillus plantarum	Bacteria	P37063

xid	lizing Agent			Re	educing Agent		Reduction Potential (V)
	F ₂	+	2e-	\rightarrow	2F-		2.87
	H_2O_2	+	2H+ + 2e-	\rightarrow	2H ₂ O		1.78
	MnO ₄ ⁻	+	8H+ + 5e-	\rightarrow	$Mn^{2+} + 4H_2O$		1.51
	Au ³⁺	+	3e ⁻	\rightarrow	Au		1.50
1	Cl ₂	+	2e ⁻	\rightarrow	2CI		1.36
ľ	O2	+	4H+ + 4e-	\rightarrow	2H ₂ O		1.23
	Cr2072-	+	14H+ + 6e-	\rightarrow	$2Cr^{3+} + 7H_2O$	lent	1.23
	Br ₂	+	2e ⁻	\rightarrow	2Br	B AG	1.07
	NO3-	+	4H+ + 3e-	\rightarrow	NO + 2H ₂ O	lucin	0.96
	Ag ⁺	+	e	\rightarrow	Ag	I Rec	0.80
	12	+	2e ⁻	\rightarrow	21-	tho	0.54
	Cu*	+	e	\rightarrow	Cu	treng	0.52
E.	02	+	2H ₂ O + 4e ⁻	\rightarrow	40H-	ng Si	0.40
Age	Cu2*	+	2e ⁻	\rightarrow	Cu	easi	0.34
Buigh	2H ₃ O*	+	2e ⁻	\rightarrow	$H_2 + 2H_2O$	Incr	0.00
	Pb ²⁺	+	2e ⁻	\rightarrow	Pb		-0.13
I OL	Sn ²⁺	+	2e ⁻	\rightarrow	Sn		-0.14
tengt	Ni ²⁺	+	2e-	\rightarrow	Ni		-0.26
Inc E	Fe ²⁺	+	2e ⁻	\rightarrow	Fe		-0.45
asin	Cr3+	+	3e ⁻	\rightarrow	Cr		-0.74
DCre	Zn ²⁺	+	2e ⁻	\rightarrow	Zn		-0.76
	2H ₂ O	+	2e ⁻	\rightarrow	H ₂ + 20H ⁻		-0.83
	Mn ²⁺	+	2e ⁻	\rightarrow	Mn	J	-1.19
	Al ³⁺	+	3e ⁻	\rightarrow	AI		-1.66
	Mg ²⁺	+	2e ⁻	\rightarrow	Mg		-2.37
	Na ⁺	+	e	\rightarrow	Na		-2.71
	Ca ²⁺	+	2e-	\rightarrow	Ca		-2.87
	Ba ²⁺	+	2e ⁻	\rightarrow	Ba		-2.91
	K ⁺	+	e	\rightarrow	K		-2.93
	Li*	+	e		11		-3.04

ROS as tool to address pollutant heterogeneity

Enzymes producing ROS and their sources

ENZYME ASSISTED WASTEWATER REMEDIATION SYSTEM FOR ORGANIC POLLUTANTS

- 1. Textile industry: Starch acted upon by Amylase – Glucose
- 2. Paper industry: Cellulose acted upon by cellulase gives glucose

Decolourization of dyes under optimized conditions

LEATHER INDUSTRY WASTEWATER - POLLUTION HETEROGENEITY AND REMEDIATION

HYPOTHESIS

-29

Pollutant heterogeneity

ASSESSMENT OF ANTIBIOTICS IN WATER AND ENZYMATIC REMEDIATION PHARAMACEUTICAL INDUSTRY

30

DEVELOPMENT OF MULTI-ANALYTE PLATFORM FOR DETECTION OF ANTIBIOTICS

IMMOBILIZATION OF ENZYMES ON TIO₂ NANOFLOWERS

DOWNSTREAM PROCESSING

Cultivation of *Pichia pastoris* in 3.7 L fermenter (un-optimized)

0 h

After 24 h

Batch operation	Agitation (rpm)	Aeration (Lpm)	Purified Xanthine oxidase activity (milliunit/ml)
Shake flask (50 mL)	150	-	7429.3
Shake flask (200 mL)	150	-	10406.81
Reactor batch 1 (1.6 L)	200	0.5	22,506.49
Reactor batch 2 (1.6 L)	200	1	18,834.99
Reactor batch 3 (1.6 L)	200	1.5	4070.35

First set of purified enzyme of batch showing maximum activity was dispatched to ELI in March 2023

Optimization of process parameters using response surface methodology

- Preliminary rector batches helped to determine the initial parameters for optimization study.
- The process parameters were improvised to enhance overall biomass yield for maximum enzyme recovery.

Growth profile of *P. pastoris* in 3.7 L reactor indicating maximum biomass concentration at 84 h

- Three test variables (agitation, aeration, and % inoculum) were selected, each one at three levels of concentration (-1, 0, +1).
- Central composite design (CCD) was employed using Design Expert Software version 8.0.6. (Stat–Easy Inc., Minneapolis, USA).
- The model prediction was confirmed with the suggested optimized value of parameters in triplicate.

EXPERIMENTAL CLIPS OF BATCH RUNS

Inoculum transfer for various runs (varying inoculum size)

Batch run of *P. pastoris* after 24 h of inoculation

Batch run of *P. pastoris* after 84 h

Experimental validation of model at optimized conditions for maximum biomass production

Parameters	Optimized conditions	Predicted value of	Experimental value	Purified Xanthine Oxidase
		Biomass (g/L)	of Biomass (g/L)	activity (milliunit/mL)
Agitation (rpm)	113			
Aeration (L/h)	0.77	5.07±0.9	5.3±2.31	39,417.63
Inoculum size (%)	12			

(a) Purification of xanthine oxidase using Ni-NTA column (1 mL column) (b) SDS-PAGE of purified enzyme with (Lane 6) under optimized conditions and (Lane 8) under un-optimized condition (c) Purified Xanthine Oxidase enzyme from optimized process parameters sent to ELI in October 2023

- > The experimental result gave an average biomass concentration of 5.3 ± 2.31 g/L.
- > Enhancement in biomass production was around 60% in comparison to unoptimized reactor studies.
- Enzyme activity increased from 22,506.49 milliunit/mL to 39,417.63 milliunit/mL under optimized conditions.

CONCLUSION

- 1. Human Xanthine Dehydrogenase (HuXDH) was cloned and expressed in *Pichia pastoris* and purified.
- 2. The Glucose Oxidase gene from Aspergillus niger was cloned and expressed in E. coli.
- 3. Scale-up of the Xanthine Oxidase production was done in 3.7 L fermenter.
- 4. Xanthine Oxidase activity was enhanced using statistical optimization process.
- 5. Enzyme assisted wastewater remediation system for treatment of organic pollutants, antibiotics, textile, paper, leather, dairy industry was developed.

Deliverable Reference No.	Deliverable Title
D4.1	Enzyme system for bio-oxidation
D4.2	Bioreactor system

Enzyme based bio-oxidation system for treatment of polluted water bodies: TRL 4; Expected to reach TRL 6 (at the end of project tenure)

SO5: Development of smart and cost-effective sensing systems for pollutant detection and actuation systems for bio-catalysis.

DEVELOPMENT OF MULTIPARAMETRIC REAL-TIME WATER MONITORING SYSTEM TO ACCESS POLLUTION HETEROGENEITY

End –User Experience

Developed Prototype

Award & Support

- Supported by SPRING.
- Got RnD support from Makerbhawan foundation & Win foundation.
- Won "Best product design" at Vishwakarma awards 2023 IIT Delhi.

Use Case:

• Industrial WWTP & wastewater ejection site

• Municipal Water Points

River Dynamics Monitoring

• Overhead Tanks

What is Unique?

• Price

Brand	Model	Price	Integrated IoT
YSI	ProDSS	₹1,57,000 - ₹2,63,000	No
Hanna	HI98194	₹1,25,000	No
WTW	Multi 3510 IDS	₹97,000	No
Our device	R-SAM-Pro	₹12,000	Yes

• Green & Sustainable Fabrication

• Artificial Intelligence & Machine Learning

• Small Form Factor & Low Maintenance

Market Size & Growth

Demographics & End User

- The major end-user are Municipal corporations, Industries and Academia.
- The largest market is North America, followed by Asia-Pacific and Europe.

Market

- Global water and wastewater sensors market-USD 3.80 billion (2019).
- Expected to register a CAGR of approximately 7.4% (2021-2026).
- Expected to reach USD 7.5 billion by 2028.

Competition

- The water quality monitoring systems market is moderately competitive with some dominant players holding significant market share.
- Key players include General Electric Company, Shimadzu Corporation, Thermo Fisher Scientific Inc.

Market Segmentation

- Wastewater sensors market is segmented by type, application and geography.
- The major types of sensors are pH sensors, DO sensors, Temperature sensors and Turbidity sensors.

SUMMARY

MICROBIAL SENSORY PLATFORM FOR BOD AND TOXIC COMPOUND DETECTION-I

- Selection isolation and testing of electroactive bacteria in different systems, to reveal their electron- transfer efficacies.
 Strains were identified and a library was established.
- Biofilm forming capacities were tested on different matrices.
- The efficacy of mixed consortia was tested on biofilm tolerance and BOD measurements
- > Schematic parts of the sensoric platform
- Sensoric unit for basic parameter
- Pretreatment units
- MFC units
- Heavy Metal sensor unit

MICROBIAL SENSORY PLATFORM FOR BOD AND TOXIC COMPOUND DETECTION-II

1. Sensoric unit measuring basic parameters

2.

Water sample

pre-treatment units

This unit is able to measure: Temperature, pH, Turbidity, Salinity, Conductivity, DO (Dissolved oxygen) **ORP** (Oxidative Reductive Potential), Ammonium- and Chloride concentration, and Pathogenic bacterium number - coliforms

combined Vacuum sonication and desinfection unit pretreats water samples for the MFC units

3.

MFC sensoric units

Small scale MFCs were established and integrated into the sensoric platform

4. **Heavy-metal sensoric** unit

NIR was planned, but now printed sensoric units are under construction. Cu, Hg, Ar

Printed sensors are under field tests

5. Data aquisition and control

The unit:

- collects data, from the sensoric systems,
- controls sampling and sample treatments,
- has the ability to perform samplings and tests in the determined/installed time periods,
- communicates with the central computer of the sampling boat during that receives commands and modifies sampling times.

CONCLUSION

- 1. Prototype for Multiparametric real-time water monitoring system to access pollution heterogeneity was developed.
- 2. Microbial sensory platform for detection of BOD and toxic compound was developed.

Deliverable Reference No.	Deliverable Title
D5.1	Bio-sensory panel
D5.2	Software

Development of multi-analyte sensor for determination of pollutants in water: : TRL 4, Expected to reach TRL 6 (at the end of project tenure)

SO6: Developing a prototype of the innovative low-cost advanced bio-oxidation treatment system for polluted water (for stagnant and flowing water bodies, such as bore wells, lakes and sewers, drains).

REAL-TIME MONITORING AND CONTROL SYSTEMS

A. Developed a multipurpose boat system:

- 1. Integrated modular sensoric platform
- 2. Capable of carrying remediation system (bio-oxidation system)
- 3. Robotic and Navigation system
- 4. Teleoperation and Autonomous operation

B. ASV Prototype - Specifications

- Dimensions of Hull: 3.6x1.4x0.7 m
 - Frame: 2.4x0.5x0.5
- Weight: 200 Kg
- Additional Payload:
 - 100Kg
 - 2m x 0.75m
- Actuation: 2-Degree of Freedom
- Autonomy:
 - Continuous Operation: 2h30m
- Speed:
 - Typical: 1.5 m/s
 - Max: 2 m/s

ASV PROTOTYPE TESTING - TELEOPERATION MODE & AUTONOMOUS MODE

ASV Position 41.186 41.185 41.185 41.185 41.185 41.1845 41.1845 41.1845 41.1845 -8.7065 -8.706 -8.7055 -8.705 -8.7045 -8.704 East (m)

Useful when

- 1. Easy Deployment and Recovery Procedures
- 2. Navigating without Maps of Surrounding Area
- 3. Navigating through High Traffic Areas

Main Features

- 1. Real-Time Data Visualization
- 2. 600m of Current Line-of-Sight Range

Useful when

- 1. Mission with Several Waypoints Distanced Far Apart
- 2. Several Missions during Same Day's Operations
- 3. Navigating with Maps of Surrounding Area

Main Features

- 1. Real-Time Data Visualization
- 2. Geo-Reference Tag of Sample Collected
- 3. Operator Assumes Supervision Behavior

10 m/s for7m30s

Objective

- Development of autonomous robot to detect underground water blockages.
- Algorithm development and testing.
- Payload integration.
- Deliver bio-oxidation system inside the pipelines to the point of blockage.
- Test and validation in realistic environment.

Blockages Occurring in Sewer Lines

Tree roots, Stones, Grease, Wooden blocks, Plastic bottles, foreign objects, etc.

Need of Imagery Dataset

S-BIRD Dataset: The dataset of 7164 images have been created for training of DNN module to detect blockages

SEWER ROBOTIC SYSTEM

- 1. Navigates using camera-sensor and embedded vision with ability to deploy the enzymes at identified points.
- 2. The AI detection algorithm with newly created extensive imagery dataset.
- **3.** Removes sewer blockages in real time with the help of attached cutter.
- 4. Can work in pipe diameters ranging from 30 cm to 1 m.
- 5. Linkage mechanism, cutting tool and three independent crawler modules, central frame
- 6. 3 crawler's module: It is arranged in 120-degree angel to contact the sewer pipe surface correctly and make driving reliable.
- 7. Semi integral Chassis design: 2 Central frames structure are used. If the robot meets with accident only damaged frame need to be changed.
- 8. Revolute Joint mechanism: helps to rotate half body of robot and move easily in small diameter pipes.
- **9. Easily adaptable:** Wall press mechanism, extendable arms to adjust as per pipe diameter.
- **10. Powerful and compact Gearbox:** Worm wheel gear mechanism is used to decrease motor speed and increase torque up to 10 times to make 4x4 driving mechanism
- **11. Cutting Assembly:** the 200 mm diameter TCT cutter are used to remove the blockage inside the sewer pipeline. The speed of motor is up to 3000 rpm.
- 12. It can be used for various **pipeline inspections.**
- 13. Solves human scavenging issue.
- 14. Single version cost Approximately 4.5 L
- 15. Real time working video available.

CASE STUDY - PUNE MUNICIPAL CORPORATION

3 Dec 2020 11:09

Γ	Details				
lerms Sower Line		2167 kilometer			
Sewer Line Sewer Pipe Diameter		216/ Kilometer Pangos from 100 mm to 1800 mm			
Sewer Pipe Diameter		7187			
Sewer Pipe Material		• • •	RCC High-density polyethylene (HDPE bid-iron PVC	2)	
Distance Between Chambe	ers	10 to	15 meter		
Sewer Cleaning Techniques		• •	Jetting Machine Sewer Suction Cum Jetting Machi Sewer Suction Cum Jetting Macl a Recycler	ne nine with	
Total Generated Sewage		744 I	MLD		
Intermediate pump stations (IPS)		6			
Sewage Treatment Plants (STPs)		9			
Main Sewer Lines		• • •	Below road River side Canal side		
 Cleaning Tools Jetting Machine Sewer Suction Cum Jetting Machine Sewer Suction Cum Jetting Machine with a Recycler 		Char 5360 6400 3700	ges/Shift (8 hours shift) INR) INR)0 INR		
Jetting Machine	Perform only single operation				
	Costly, More time consuming				
	Less efficient				
Sewer Suction Cum	Need of skilled operator and labors				
Jetting Machine with a	High maintenance cost				
	Need of large space for operation purpose				
Recycler	Very costly 49				

CONCLUSION

- > Autonomous Unmanned Vehicle (AUV) for water quality monitoring was developed.
- Autonomous robot to detect underground water blockages, removal of physical blockage, deliver the Bio-oxidation system inside the pipelines to the point of blockage.
- Robot prototype developed, tested and validated.

Deliverable Reference No.	Deliverable Title
D6.1	Biosensor integrated to Robot system
D6.2	Real-time monitoring system

Autonomous Unmanned Vehicle (AUV) for water quality monitoring with auxiliary system to support its operation: TRL 6

SO7: Field trials and testing of prototype(s).

Immobilization Matrices Used

- i. TiO2 nanoflowers
- ii. Zr MoF

iii. ZnO

- iv. Silanised Glass beads (1-2mm Diameter)
- v. Sodium Alginate
- vi. Kappa Carrageenan,
- vii. Cross linked Enzyme crystals

Results

Silanised Glass beads (1-2mm Diameter) with 1% Silane were found to be highly effective in

- A. Mechanical strength
- B. Enzyme stability (T50 more than 60 cycles)
- C. Thermal and pH stability.
- D. Storage and Environmental stability

- Synthetic wastewater was used to evaluate the efficiency of the enzymes and the generation of hydroxyl radical was evaluated.
- To prevent fouling of the enzymes by the hydroxyl radical, the inclusion of the enzyme beads into PVDF porous membrane bags was found to be effective and removal of hydroxyl radical from the packed porous membrane bag was effective.
- > The BOD and COD reduction was found to be above 98%.
- ➤ The immobilized bio-oxidation enzyme system was found to degrade the Lignin and organic matter in Paper mill effluent and in pharmaceutical effluents.

Ammoniacal Nitrogen Reduction

Sample ID	Units	Raw	After Treatment
Aeration 1	PPM	2000	48
Aeration 2	PPM	3000	52
High TDS ET	PPM	3200	45
High TDS conc.	PPM	2800	43
LTDS conc.	PPM	600	40
LTDS collection	PPM	500	35
LTDS Hold	PPM	500	32
2000 KLD	PPM	300	50

COD and Ammoniacal Nitrogen Removal from Pharmaceutical Effluent

S. No.	Parameter	Units	Permitted limits	Initial Concentrati	Final after treatment
				on	
1	COD	mg/L	< 250	8000	197
2	TDS	mg/L	< 1200	2654	673
3	pН		7.00 - 8.00	8.9	7.2
4	Color	Hazen Units	Less than 10 HU	56	7
5	Turbidity	NTU	Less than 10	164	8
6	TSS	mg/L	Less than 20	51	5
7	Ammoniacal Nitrogen	mg/L	<50	2379	36
8	Odor		Nill	Pungent Pyridine odor	Mild fermented odour

Method of analysis: As per APHA (American Public Health Association) method

nt Post enzymatic treatment (30 min) Post enzymatic Post enzymatic treatment (45 min) treatment (1h)

Results of Preliminary testing of Enzymes on Pharmaceutical Effluent 2:

- a. Raw effluent 2 (500 ml) was treated with 0.1 ml (10 PPM) of Enzyme.
- b. After 30 mins of treatment, poor settling was observed but with flocs suspended and tarry materials were separated but suspended in middle column of water.
- c. Enzyme treatment was found to reduce more than 40% of sludge and water clear, but with high color Remaining sludge was tarry material which floated to surface.
- d. Post enzyme treatment odor removal was more than 80%.

Results of Preliminary testing of Hydroxylase enzyme on Pharmaceutical Effluent 1:

- a. Raw effluent (1 liter) was treated with 0.1 ml (10 PPM) of Enzyme
- Enzyme treated effluent showed more than 60% of sludge was digested and water clear. Remainingsludge was tarry material which floated to surface.
- c. Post enzyme treatment odor removal was more than 98%.

CONCLUSION

A bio-oxidation system to treat pollutants in wastewaters.

Deliverable Reference No.	Deliverable Title
D7.1	Prototype system
D8.1	Report and field data
D8.2	Commercially viable product

A completely autonomous bio-0xidation system with onboard sensors, electronics, actuation systems, auto-diagnostics and communication with remote control center: **TRL 6 (at the end of project tenure)**

SO8: Developing stakeholders decision making and management framework (Municipality and NGOs, State Water Board) to apply the developed remediation system.

INDO-NORDIC WATER FORUM ESTABLISHED

Mission and Vision

INWF acts as a joint network and platform for water stakeholders in India and the Nordics, aiming to solve water management challenges with a multi-stakeholder approach.

INWF

- 1. ORGANISED **INTERNATIONAL WATER DAY SEMINAR** IN DELHI ON 21-22 MARCH 2022 AND WORLD ENVIRONMENT DAY IN JUNE 2022
- 2. MOU WITH GUJRAT JAL(WATER) BOARD AS PARTNER INEUWF IN 2022-2023
- **3. MOU WITH MIT, PUNE** IN 2022-23
- 4. MOUS WITH ALL STAKEHOLDERS OF SPRING PARTNERS
- 5. ORGANISED **INTERNATIONAL SEMINAR CUM TECHNOLOGY DEMONSTRATION** (MIT, FWF,DYP, ELIX, PAL) ON MUTHA-MULA RIVER, PUNE ON 25 MAY 2022
- 6. ORGANISED INTERNATIONAL WATER SUMMIT IN NEW IN DELHI ON 09 TO 11 MARH 2023
- 7. ORGANISED AN **INTERNATIONAL SEMINAR CUM TECHNOLOGY DEMONSTRATION** (MIT, FWF,DYP, ELIX, PAL) ON SUKHRALI LAKE, GURGAON ON 02 OCT 2023
- 8. PUBLICATIONS REVIEWS AND NEWS IN MEDIA CARRIED OUT

Dissemination and Outreach Activities		
04 research articles, 07 book chapters, 01 patent filed, Research articles from all Institutes in pipeline	Outreach	
> 20 manpower trained, several PhDs from India jointly supervised	Online/personal consortium/stakeholder meeting – Palavi Trust, SRKREC	
Seminars/Workshops	Demo sites – keen interest from water sector in India – Palavi Trust	
International Water Day Webinar – Palavi Trust	INEUWF pilot launch - >1000 contacts - FWF/Palavi	
Research/student seminars – Research partners	Mapping EU/India water/wastewater actors – FWF/Palavi	
Stakeholder workshop (hybrid) - SRKREC	Webinars – Ministries, Embassies, water industries – FWF/Palavi Trust	
International Conference on River Health – IIT BHU	Social media, press releases, website <u>https://en.uit.no/project/springeuindia-</u> <u>eu</u>	

MLA seeks experts' advice on construction of barrages

Grandhi Srinivas strives for building two barrages downstream of Dhowleswaram Barrage for protecting the delta area from salt water from sea as well as to fully utilise Godavari waters

HANS NEWS SERVICE BHIMAVARAM

BHIMAVARAM MLA Grandhi Srinivas has asked for the experts' advice on construction of two barrages downstream of Dhowleswaram Barrage for protecting the delta area from salt water from sea as well as to fully utilise Godavari waters.

While visiting the Water and Environment Testing (WET) centre at SRKR Engineering College here on Sunday, the MLA expressed concern over the wasteful flow of water into the sea during the monsoon season. He assured the experts that he would take the issue to the notice of Chief Minister YS Jagan Mohan Reddy if they suggested for the two barrages downstream

He recalled that the Chief Minister took a right decision to stop water from Prakasam Barrage in Vijayawada flowing into the sea by ordering construction of two barrages downstream of Prakasam Barrage

he head of the WET Centre of SRKR Engineering College, Dr PA Ramakrishnam Raju explaining the data map to MLA Grandhi Srinivas in 8himavaram on Sunday

The WET centre head Dr PA Ra-EU-India project to analyse entire dismakrishnam Raju explained to the trict canals and drain water quality to MLA that the centre had developed develop one tool in European Union vast data with the help of satellite imresearch centres to purify the polluted ages to clearly identify land use and water. College principal Dr M Jagapati rainfall in different areas in the district, Raju and secretary and correspondent Sagivithal Ranga Raju assured the MLA wet lands, canals, drains and entire data is available in the centre. Recently, that SRKR research centres are always SRKR College signed the MoU with ready to serve society.

Equipment to trace pesticide in canal water installed

It helps to identify the minutest traces of pesticides and chemical residues in water

HANS NEWS SERVICE centre in-charge and dean of the BHIMAVARAM research and development Dr PA Ramakrishnam Raju said the un-HIGH pressure liquid chroder EU-India project, director of matography (HPLC) equipment Biotechnology under the minwas set up at the Water, Environistry of Science and Technology ment and Technology (WET) Rehas provided the grant for search Centre on the premises of procuring the HPLC equipment the SRKR Engineering College to worth Rs 25 lakh. detect the residues in the water SRKR Engineering College has been engaged in research activiof the Godavari canals, said college principal Dr M Jagapati ties in a collaborative project with the European countries and On Thursday, college secretary the Indian IITs at an estimated and correspondent Sagi Vithal cost of Rs 31.5 crore in the name Rangaraju inaugurated the of SPRING- 2020. As part of the project, the SRKR Engineering equipmen The college WET research College received Rs 1.1 crore. In

addition, the director of Biotechnology of the Union Ministry of Science and Technology is providing funding to research institutes in India of Rs 6.1 crore. Ramakrishnam Raju said that this equipment helps to identify even the minutest traces of pesticides and chemical residues in water in the region in the backdrop of unknown illness in Eluru. Civil Engineering head Dr A Subrahamanyam Raju, WET centre professors, Dr Seetaramireddy, Dr KM Ganesh, Dr

T Rambabu, Dr Suri Babu, Jeevan, N Kisan and others participated in the programme

ಎస్ఆర్కేఆర్ కళాశాలలో లీసెర్ర్ష్ సెంటర్ ప్రారంభం

జలగరళం

the troads and శా పరిగ్రమం కాలున్నం, ప్ర శ్వంతో పెళ్లి ప్రాంథంలోన

. ఎదుర్కొంటున్న సమస్యలపై పరిశోధనలు నిర హించాలని నార్వేలోని అరిటిక్ యూనివర్పిటి ఫాఫెనర్ రజనీష్కౌర్ కాలె అన్నారు. బుధవారం ఎమవరం ఎస్.ఆర్.కె.ఆర్. ఇంజినీరింగ్ కళాశాల ందరించి సందరంగా కళాశాలలో నూతసంగా యినబుల్ హేబటేట్ అండ్ mandax xt ມແມຍ໌ ఎనర్జ ఇంజినీరింగ్ రీజెర్స్ సెంటర్ను ఇమె (పారంబించారు, అనంతరం వేట్ సెంట లో నిర్వహించిన కార్యకమంలో ఆమె మాట్రా పారంజసున, రజనీష్కౌర్ కాలె పతూ యూరోపియన్యూనియన్ దేశాలతో భారతదేశం 2020 నాటికి పూర్తయ్యే విధంగా 72 ప్రాజెక్టులు చేపట్టిందని ఆమె చెప్పారు. కళాశాల

Prof. Rajnish Kaur Calay, UiT-Norway Visit

to WET Centre, SRKREC-India

దారు. అందుకు నార్వే యూనివర్సిటీ తమ వం కు సహకారం అందిస్తుందన్నారు. కళాశాల వెట్ సెంటర్ ఆర్అండ్డి దాక్టర్ పి.ఎ.రామకృష్ణం రాజు మాట్రాడుతూ వెట్ సింటర్ ఆధ్వర్యంక జరుగుతున్న ప్రాజెక్టులు వివరించారు. భారతదే శంలో ఐఐటీలు వంటి ప్రతిషాకరమైన సంస్థలతో కరిసి విదేశీ విశ్వవిద్యాలయాలతో కరిసి పైరాజె కులు చేయదానికి ఎస్ఆర్కేఆర్ కళాశాలకు అవ ు రావటంపై ఆయన అనందం వ్యక్తం ఎస్ఆర్కేఆర్ కళాశాలో లీసెర్ష్ సెంటర్ను వీశారు. కళాశాల సెక్రటరీ ఆండ్ కరస్పాండింట సాగి విఠల్ రంగరాజు, ప్రిన్నిపాల్ డాక్టర్ ఎం.క స్తాయిలో రెండు, మూడు డిపార్మెంటు కలిపి గపతిరాజు, పెట్ సెంటర్ రీసెర్స్ అసోసియే ఒక ప్రాజెక్టు దేయాలని రజనీష్కార్ కాల్ సూచిం ఎన్8వకిషన్ తదితరులు పాల్గాన్నారు.

Prof PARK Raju Presenting SPRING activities at District collectorate

Dissemination of SPRING activities to the Policy Makers/ Ministers

Dissemination Activities/Information to Policy Makers

Public representatives visit our Laboratories and appreciating our efforts

Prof PARK Raiu interacting with Public representatives, showcasing the importance of SPRING Project

Deliverable Title Deliverable Reference No. క జమాదిక్నాంతిన ఉదయోగందిలా ప్రజాకక ఉంటుంది. భాకర్ పేప రాడుకృష్ణురాజు (పోర్యేరాజు) వెట్ సింటర్ కో –అస్తినింగ్ D9.1

Public Web Portal **Business Plan & Extension** D9.2 Activities

Date : 10/12/2021 EditionName : ANDHRA PRADESH(WEST GODAVARI) PageNo : 0

TECHNOLOGY OUTCOME

- **1. Spatial maps** of the River Ganga and Godavari delta region to identify pollutant hot spots and type of pollutants.
- 2. River Health Index indicator analysis tool.
- 3. Enzyme for **advanced bio-oxidation process** and **scale-up process** for mass production.
- **4. Integrated advanced bio-oxidation system** for remediation of wide spectrum of pollutants in point and non-point sources.
- 5. Development of a **low-cost ESP32-based real-time water monitoring system** with hybrid power management and remote data accessibility (Ready prototype).
- **6. Microbial sensory platform** for BOD and toxic compound detection.
- 7. Automated smart technology for river environmental analysis and mobile enzyme release.
- 8. Automated smart technology for blockage detection and cleaning of underground pipes.

SUSTAINABILITY CHALLENGES AND MAINTENANCE OF ON-FIELD ACTIVITIES POST PROJECT COMPLETION

- 1. Overarching goal of SPRING: A long term consistent solution to the contaminated Indian and European water bodies as part of a green sustainability strategy.
- 2. Beyond the project period, efforts towards **multistakeholder learning alliances** will be institutionalized in the SPRING community of practice (CoP) for dissemination of the developed viable technology (that will be covered by IPR).
- **3. SME partner** ELI shall take the responsibility of the continued demonstration while having made necessary financial and resource arrangements from either the local governing bodies or the Government bodies.
- **4. BMC** shall extend its resource support for sites at Bhimavaram Municipality.
- 5. A **technology action plan** to identify other small water suppliers for undertaking the maintenance through the technology developed in association with the respective Municipalities will be undertaken.

सत्यमेव जयते Department of Science and Technology Ministry of Science and Technology Government of India

European Commission

Horizon 2020 European Union funding for Research & Innovation

DEPARTMENT OF BIOTECHNOLOGY GOVERNMENT OF INDIA