

 $\bigcirc$ 

Unlocking Wastewater Treatment, Water Re-use and Resource Recovery Opportunities for Urban and Peri-urban Areas in India OVERVIEW OF PROJECT ACHIEVEMENTS

Dr. Paul Campling | VITO Belgium Anshuman | TERI, New Delhi, India

EU-India WaterTech Event | 29-30 January 2024 | IIT Bombay | Mumbai

## **Project goal and approach**



Unlock environmental and economic potential for wastewater treatment, water reuse and resource recovery









## **Pavitra Ganga in brief**



- A research and innovation action project funded in the H2020 EU-India Cooperation (EC / Gol – DBT)
- 14 project partners from academia, research centres, industry and SMEs (9 EU and 5 Indian partners)
- Total budget € 4.11 M (EC € 3.07 M Gol € 1.03 M)
- 01/02/2019 31/01/2024
- www.pavitra-ganga.eu







## The PAVITRA GANGA Consortium







The Energy and Resources Institute

भारतीय प्रौद्योगिकी संस्थान दिल्ली Indian Institute of Technology Delhi







## WP Image: Project management 1 Image: Project management



#### **RESEARCH AND INNOVATION**













# WP2 Stakeholder engagement



Analyse water governance systems

Co-creation Workshops

MCDA and portfolio analysis

Wastewater safety plans

- Stakeholder workshops (N. Delhi & Kanpur)
- Assessed cases & Identified barriers and factors for good governance.
- Policy Brief
- Stakeholder analysis; engagements.
- Co-creation workshops done
   1- (Problem structuring), 2- (WW management alternatives), 3- (Portfolio outcomes)
- Project Brief/Fact Sheets (on WW management in two pilot sites)
- MCDA & portfolio models, and performance assessment of technologies
- MCDA & Portfolio Models
- Development of wastewater safety planning
- Citizen Science and capacity building: WQ monitoring and testing

#### **Stakeholder Consultation Workshops**



New Delhi (Feb'20)



Kanpur (March'20)



Kanpur Co-Creation Workshop







# WP2 Wastewater safety plans WWSP





#### For 2 Pavitra Ganga test sites: Delhi and Kanpur





- WWSP adapted and successfully applied
   PG technologies minimize health risks for farmers and operators
   Oitigen Science
- Citizen Science



# **Monitoring** • Contaminants of Emerging Concern



#### **Non-targeted Screening > 140 CECs detected**



## PFAS detected across the whole water cycle

mainly 2<sup>nd</sup> Generation compounds

| Sampling<br>event | Total PFASs | EFSA<br>PFAS | T-PFHxS | PFOA | PFNA | PFOS | 6:2FTS | 8:2FTS |
|-------------------|-------------|--------------|---------|------|------|------|--------|--------|
|                   | ng/L        | ng/L         | ng/L    | ng/L | ng/L | ng/L | ng/L   | ng/L   |
| 06/03/2023        | 40          | 14           |         | 3,2  | 11   |      | <20    | <2     |
| 20/11/2023        | 3,7         | < 2          | <2      | <2   |      | <50  | NA     | <2     |
| 06/03/2023        | 166         | 31           |         | 8,6  | 22   |      | 100    | 2,1    |
| 20/11/2023        | 11          | < 2          | <2      | <2   |      | <40  | NA     | <2     |
| 2022              | 13          | 5,2          | < 2     | < 2  |      | < 2  | < 2    | < 2    |
| 20/11/2023        | 132         | 12           | 10      | 2,6  |      | <40  | NA     | 95     |
| 2022              | 400         | 4            |         | 4    |      | < 2  | 59     | 330    |
| 06/03/2023        | 257         | 17           |         | 6,6  | 10   |      | 120    | 100    |
| 2022              | 275         | 3,5          |         | 3,5  |      | < 2  | 49     | 220    |
| 20/11/2023        | 12          | 2,6          | <2      | 2,6  |      | <40  | NA     | <2     |
| 2022              | 6           | < 2          | < 2     | < 2  |      | < 2  | 2,5    | < 2    |
| 20/11/2023        | 32          | 0            | <2      | <2   |      | <40  | NA     | 24     |
| 2022              | 11          | 5,1          | <2      | <2   |      | 5,1  | <2     | <2     |
| 20/11/2023        | 83          | 0            | <2      | <2   |      | <40  | NA     | 48     |
| 2022              | 16          | 6,4          | < 2     | < 2  |      | 6,4  | < 2    | < 2    |

In cooperation with PERISCOPE (a Flemish - Indian Research Project)



# **Demonstration** and case studies







9











COD (mg/L)

11





# Influent

## SFD-MBR demonstrated in Kanpur

- MBR-like behaviour by filtration thru cake layer
  - 10% of energy consumption of conventional MBR
  - Lower pressure gradient compared to conventional MBR, suitable to gravity-driven operation
  - Very low turbidity effluent suitable for direct UV disinfection

### Filtrate quality: COD < 50 mg/L | turb. < 10 NTU</p>









# WP3 Technologies • Constructed Wetlands +







## Vertical flow pilot wetlands in EU & India

- Conventional substrate plus...
  - Modifications in several layers
  - Zeolite
    - for advanced heavy metal removal
  - Granular activated carbon for CEC removal
- Removal of target pollutants (CEC incl. PFAS) to below Limit of Detection
   Excellent removal of HMs
   Wary stable operation
- Very stable operation



| C                     | rođ    | STP Effluent | Commentioned | 6.46   | 7       | C141 A | C144 - D |
|-----------------------|--------|--------------|--------------|--------|---------|--------|----------|
| Сотроина              | [ng/L] | [ng/L]       | Conventional | GAC    | Zeolite | CW+A   | CW+B     |
| 1H-Benzotriazole      | 30     | 308 ± 98     | -4 %         | > 89 % | 88 %    | > 89 % | > 89 %   |
| Candesartan           | 30     | 1245 ± 265   | -16 %        | > 97 % | 80 %    | > 97 % | > 97 %   |
| Carbamazepine         | 30     | 163 ± 36     | -19 %        | > 80 % | > 80 %  | > 80 % | > 80 %   |
| Clarithromycin        | 30     | 101 ± 60     | 52 %         | > 53 % | > 53 %  | > 53 % | > 53 %   |
| Diclofenac            | 10     | 1.095 ± 281  | -40 %        | > 99 % | 93 %    | > 99 % | > 99 %   |
| ∑ Methylbenzotriazole | 250    | 420 ± 250    | > 40 %       | > 40 % | > 40 %  | > 40 % | > 40 %   |
| Metoprolol            | 30     | 775 ± 207    | 84 %         | > 96 % | > 96 %  | > 96 % | > 96 %   |
| Sulfamethoxazole      | 30     | 223 ± 132    | 18 %         | > 80 % | 65 %    | > 80 % | > 80 %   |
| Amisulpride           | 30     | 42 ± 9       | 16 %         | > 19 % | > 19 %  | > 19 % | > 19 %   |
| Citalopram            | 30     | 35 ± 4       | > 12 %       | > 12 % | > 12 %  | > 12 % | > 12 %   |
| Venlafaxine           | 30     | 110 ± 16     | 18 %         | > 72 % | > 72 %  | > 72 % | > 72 %   |
| Irbesartan            | 30     | 135 ± 49     | 1 %          | > 74 % | > 74 %  | > 74 % | > 74 %   |
| Hydrochlorothiazide   | 30     | 145 ± 41     | -22 %        | > 77 % | > 77 %  | > 77 % | > 77 %   |
| PFBA                  | 10     | 16 ± 3       | -31 %        | >97 %  | -51 %   | >97 %  | >97 %    |
| PFOA                  | 0.2    | 11 ± 1.4     | 20 %         | > 98 % | 56 %    | > 98 % | > 98 %   |
| PFBS                  | 1      | 9 ± 2        | -30 %        | > 91 % | -34 %   | > 91 % | > 91 %   |
| PFOS                  | 0.2    | 5 ± 1        | 64 %         | > 96 % | 89 %    | > 96 % | > 96 %   |









#### **Outcomes: Several issues encountered!**

- **Good performance of IPC membranes** for direct sewage filtration
- Critical air pollution led to rapid corrosion of electrical and mechanical units
- Potential of biogas production reduced → negative impact on Andicos business model
  - Changed organic content of sewage
  - Loss of organics in membrane tank  $\rightarrow$  optimized tank design
  - Mixing concentrated sewage with food waste unsuitable due to reluctance to mix fecal and non-fecal wastes
     → using septic waste instead

#### Why is Andicos still relevant for India?

- Converting organics from sewage and solid waste into biogas → Green Energy and GHGe reduction
- Modular set up means that it's flexible for new decentralized solutions
- Permeate from IPC Filtration is a safe wastewater for non potable reuse.





\_\_\_\_

## WP4 Smart Water Mgmt • Monitoring & Modelling









## WP4 Smart Water Mgmt • Dashboard: Monitoring







# WP6 Capacity Building • Workshop Series



## Six workshops in Pavitra Ganga

1. Water management decision support systems

Smart Water Management 2. Benchmarking water quality and quantity and use of mobile monitoring solutions



- 3. Safety planning for wastewater reuse
- 4. Multi-criteria Decision (MCD) models to support regional water management

#### Wastewater treatment & resource recovery

5. Innovative technologies for wastewater treatment and reuse/recovery











6.

Indian wastewater: challenges and solutions



#### PAVITRA GANGA OPEN COURSE NETWORK





SENCHMARKING WATER QUALITY AND DUANTITY AND USE OF MOBILE WONITORING SOLUTIONS

A workshop on Akko's data collection and monitoring tool will be given, which includes goe tagged data collection mobile monitoring solutions flow cost sensors. I smart phonea) and a network of stationary real time monitoring sensors, can quiddy and accurately map situations and teack changes.



ECISION ANALYSIS PROCESSES TO SUPPORT

This course deals with processes to facil rate multi-actor problem structuring and multi-criteria decision enalysis for the development and apprainal of options to jointly address shared problems.



WATER MANAGEMENT DECISION SUPPORT SYSTEMS

The use and application of Sensorview, 8, a web-based water quality and water quartity dedroced (DS bases and timearise analysis) will be presented in a workshop to provide operational dashboards for water quality alerts and control protecteds.

## **Registration for Pavitra Ganga Open Course Network**

https://pavitraganga.eu/en/registration-pavitraganga-open-course-network To be launched soon!



NNOVATIVE TECHNOLOGIES FO NASTEWATER TREATMENT AND IEUSE/RECOVERY

The innovative technologies can be used as stand-alone STP, or to upgrade existing STPA, with a focus on energy/waste, heavy metal accesses. It will store the different



IDIAN WASTEWATER: CHALLENGES AND DUITIONS

In this workshop we will create awareness among EU stakeho ders (research, ocvernment and private) of the main



MINIMIZING OCCUPATIONAL RISKS IN WASTEWATER TREATMENT: THE ROLE OF TECHNOLOGY-BASED WASTEWATER SAFETY PLANNING





Dissemination • Papers, Workshops, Conferences 🏹

6 Newsletters

WP8

- Final Conference in Jan 24 in New Delhi
- Frequently updated website
- Scientific peer-reviewed journal publications still ongoing
- 2 + 3 PhDs theses to be completed ca. 2025
- 7 contributions to IWA Reuse 23 in Chennai







18

PAVITRA



## **FINAL CONFERENCE**

Wastewater treatment and reuse: challenges and solutions in India



24<sup>th</sup> January 2024 India Habitat Centre New Delhi

Anshuman Director, Water Resources The Energy and Resources Institute (TERI)













AGRICULTURE

ENERGY

ENVIRONMENT H

AT RESOURCE SECURITY



# **Key Policy Messages**







Mainstreaming Governance on Wastewater treatment, water reuse and Resource Recovery: Learnings from India and the EU

- Need for target-based regulations, defined national reuse
   standards for treated wastewater and sewage sludge and effective
   enforcement strategy. (More updated WW discharge norms
   including ECs. Monitoring them as first step!)
- Policy and guiding frameworks need to establish detailed guidance on wastewater and sewage sludge treatment and reuse technologies (fit-for purpose treatment).
- Need of effective financing mechanisms (funds, taxes, tariffs) that permit sufficient cost- recovery for long-term operation and maintenance of wastewater and sewage sludge treatment infrastructure.
- Appropriate pricing of treated WW (TUW) aiming recovery of all including additional O&M costs for intended reuse WWQ as well full cost recovery for TUW treated domestic sewage.







- Treated WW need to be priced lower than the existing freshwater and therefore rational pricing of freshwater/drinking water as well is critical to success of WW reuse policy. Differential pricing (IBT) to be practiced
- Incentives/Disincentives Mechanisms: rebates on GST, exemption in custom duty etc.
- Enhanced government support and investments into research and development for innovative technologies for wastewater treatment and RRR. National Funding Mechanism for financing WW reuse projects (AMRUT, etc.)
- State Governments must provide policies / laws for wastewater management and reuse.
- A robust implementation framework involving last mile connectivity of solutions will help in better upscaling and optimization.
- Strengthening of institutional & monitoring capacity. Engagement of key stakeholders in policy formulations and implementation. Community mobilization, awareness and capacity building important for collaborative action.

## Thank you for your attention



#### Dr Paul Campling Business and Bela

Business and Relationship Development Flemish Institute for Technological Research

paul.campling@vito.be P +32 14 336 704 M +32 498 911 485

#### **Mr Anshuman**

Director of the Water Resources Division TERI - The Energy and Resources Institute

anshuman@teri.res.in P +91 11 2468 2100 (Ext: 2302) M +91 98998 09115



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 82 This project has been co-funded by Department of Biotechnology (DBT), Government of India.

o 821051.