

Natural & Advanced Technologies for Wastewater Treatment and Reuse in India

Duration (so far)
Contribution

60 months
2.5M Euro 7.32M INR

Prof. Nadeem KhalilAligarh Muslim University, India nkhalil.cv@amu.ac.in

Dr. Mirko Hänel ttz Bremerhaven, Germany mhaenel@ttz-bremerhaven.de

Scope and Objectives

The project validated, deployed and developed cost-effective & sustainable **solutions to tackle water challenges** and ensure the provision of safe water reuse, rejuvenate water quality of rivers, and restore ecosystems **in India**.

Develop and validate innovative, adapted and cost efficient wastewater & water treatment systems

Enhance naturalbased and high innovative water & wastewater treatment technologies

Impel a cross-cutting issue that engages society and promotes gender equality

Develop and
demonstrate
applications for
wastewater treatment
and large scale
nutrient recovery

Produce marketable secondary raw materials

Asses the technical, financial and environmental sustainability of PAVITR technologies

Provide evidence and policy recommendations

Improve acceptance from final users

Empower and support industries and SMEs in India

Scope and Objectives

Technology Enhancement

- Natural-based treatment technologies
- High-innovative treatment technologies & sensors
- Emerging pollutants removal technology
- Drink Water and Rainwater Harvesting
- Sensors development

Demonstrative Application


- 14 Pilot Systems in five Indian regions
- Treatment capacity to benefit around 50 000 people with sanitation and access to water

Road to the Market

- Training and know-how transfer
- Creating new business opportunities and green jobs
- Future upscaling and multiplying
- Decision support system

Transfer/Exchange of Knowledge and Technology

LOCATION OF THE PILOT PLANTS IN INDIA TECHNOLOGIES, THEIR CAPACITIES & RESPONSIBLE PARTNERS

NAGPUR

IIT KHARAGPUR

Rich Water SBR (Capacity-75 m3/d) (BIOAZUL + AMU) 6 High Rate Algal Pond System (Capacity-50 m3/d) (UPC + AMU) 1 Scheme of a high rate algal pond syste Short Rotation Plantation (Willow+Bamboo+Poplar) French Reed Bed (Capacity-50 m3/d) (Capacity- 198 m3/d) (AMU + IRIDRA) (TTZ + AU + AMU)ALIGARH **Rain Water Harvesting** (Capacity- 30 m3/d) Sensors UASB optimization Reed Bed For Feacal Sludge Treatment (KRETA + IIT - ISM) (Capacity- 250 m3/d) (AIMEN + AMU) (Capacity-5 m3/d) (AMU + IRIDRA) **ALIGARH Anaerobic Baffled Reactor** + Constructed Wetlands (Capacity- 75 m3/d) (IRIDRA + SIU + NEERI) **Optimized SBR** (Capacity-150 m3/d) (BIOAZUL + IIT - ISM) **IIT-ISM DHANBAD FSSM (Fecal Sludge Mgt)** (Capacity- 25 m3/d) (NEERI + IRIDRA) Electro-Chlorination (ECI2) **SIU PUNE** (Capacity-30 m3/d) MBBR- VFCW -TOXIDATION (AUTARCON + SIU) (Capacity- 3 m3/d) (AUTARCON + IIT-KH) **MBBR & SAAF** (Capacity-100 m3/d) (NEERI) 11&12 NEERI

NAGPUR

Technology: Electro- Chlorination System (ECL2) for decentralized water

disinfection

TRL: 8-9 **Capacity installed:** 300 m³/d

Outputs: Disinfected drinking water **Application:** Drinking water supply

Technology: Anaerobic Baffle Reactor (ABR) + Constructed Wetland (CW) Capacity installed: 50 m³/d

TRL: 8

Outputs: Treated water, composted sludge after 5-6 years

Application: Reuse for irrigation; composted sludge as soil conditioner in

agriculture

Technology: Rain Water Harvesting (RWH) system

Capacity installed: 100 m³/d **TRL:** 9

Outputs: Slowly discharged rainwater

Application: Groundwater recharge, water reuse

Technology: Sequencing Batch Reactor (SBR) optimization

TRL: 8 Capacity installed: 150 m³/d

Outputs: Treated and disinfected effluent

Application: Reclaimed water for irrigation and fertigation

Technology: RichWater® Sequencing Batch Reactor (SBR)

TRL: 7-8 Capacity installed: 75 m³/d

Outputs: Treated and disinfected effluent

Application: Reclaimed water for irrigation and fertigation

Technology: High Rate Algal Pond (HRAP)

TRL: 7-8 Capacity installed: 50 m³/d

Outputs: Treated effluent/microalgae biomass

Application: Reclaimed water for irrigation and biofertilisers from

microalgae biomass

Technology: Water fertigated Short Rotation Plantation (wfSRP)

TRL: 8-9 Capacity installed: 300 m³/d

Outputs: Treated water (groundwater recharge) & Biomass production

Application: Production of bioenergy, biochar, renewable raw materials

Technology: French Reed Bed (FRB)

TRL: 8 Capacity installed: 50 m³/d

Outputs: Treated effluent, Composted sludge (after 8-10 years)

Application: Water for irrigation, Composted sludge as soil conditioner in

agriculture

Technology: Sensors for Up flow Anaerobic Sludge Blanket (UASB)

TRL: 7-8 Capacity installed: 250 m³/d

Application: Monitoring devices for operation and control

Technology: Faecal Sludge and Septage Management (FSSM): Sludge Drying Reed

Bed (SDRB)

TRL: 7-8 Capacity installed: 5 m³/d

Outputs: Treated filtrate, Nutrient rich soil after 6-8 years

Application: Land irrigation of treated filtrate, Soil conditioner in agriculture

Technology: Moving Bed Biofilm Reactor (MBBR)

TRL: 6-7 Capacity installed: 50 m³/d

Outputs: Treated disinfected effluent, Nutrient rich soil (after several years)

Application: Water for irrigation

Technology: Submerged Aerobic Fixed Film Reactor (SAFF)

TRL: 7-8 Capacity installed: 50 m³/d

Outputs: Treated effluent

Application: Water for irrigation

Technology: Faecal Sludge and Septage Management (FSSM): Mechanical

Dewatering and Drying System (MDDS)

TRL: 7-8 Capacity installed: 25 m³/d

Outputs: Treated sludge

Application: Re-use of sludge as biofertilizer

Technology: Integrated MBBR-VFCW – Toxidation unit

TRL: 6-7 **Capacity installed:** 3 m³/d

Outputs: Treated disinfected effluent

Application: Not defined yet

Technology: Faecal Sludge and Septage Management (FSSM): Sludge Drying Reed

Bed (SDRB)

TRL: 6-7 Capacity installed: 5 m³/d

Outputs: Treated filtrate, nutrient rich soil after 6-8 years

Application: Land irrigation of treated filtrate, Soil conditioner in agriculture

Technology: Moving Bed Biofilm Reactor (MBBR)

TRL: 6-7 Capacity installed: 50 m³/d

Outputs: Treated disinfected effluent complying with NGT norms

Application: Water for irrigation



Technology: Submerged Aerobic Fixed Film Reactor (SAFF)

TRL: 6-7 Capacity installed: 50 m³/d

Outputs: Treated effluent complying with NGT norms

Application: Water for irrigation

Results

19 international workshops and training sessions

22 MSc/PhD theses developed within the PAVITR project

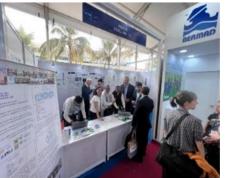
16 articles published in scientific journals, 3 submitted and 5 articles are planned to be submitted in 2024 (vs 8 initially planned)

International colloquium of stakeholder and business matchmaking Tour (27 letters of intent for potential partnerships signed).

Technical visits and demo sessions for students, academics, professionals and local authorities

Agreements with local authorities and end users for sustainability and maintenance after the end of the projects

Joint activities for community involvement


Reports on indian media regarding PAVITR project

LCA/Potential for Market Uptake

- **High-Rate Algae Ponds (HRAP)-** for wastewater treatment and the production of algae biomass, which can be transformed into biofertilisers, biostimulants, biogas.
- Wastewater fertigated Short-Rotation Coppice(wfSRC)- for the cultivation of biomass using wastewater.
- **Constructed Wetlands** for storm water, domestic, and industrial wastewater treatment, as well as sludge drying.
- Integrated concepts for rainwater utilization, reuse, and groundwater recharge.
- Portable **optical sensing devices** for the in-situ monitoring and control of Escherichia coli within wastewater treatment and drinking water plants
- Decentralized drinking water disinfection systems
- **Sequential Batch Reactors (SBR)** for the treatment of domestic and non-toxic industrial wastewater
- Monitoring devices to optimize field management, including on-demand irrigation and crop protection

Sustainability Challenges

Sustain and maintain prototypes installations

- Demo cases, produce data and results
- Support cost benefit calculations
- Production of documentation material

Sharing results with relevant stakeholders

• Potential clients, politicians, authorities

Multiply the technologies in different regions to generate more case studies

Establishment of national/regional training centre for NB treatment and drinking water solutions

Official listing of approved technologies

Outcomes so far

- ✓ **14** technologies installed serving more than **50,000** people in different geographical locations
- ✓ Approx. 1,500 m³/d wastewater treated (vs 422 m³/d initial envisaged)
- ✓ LCA and CBA completed for 3 technologies
- ✓ Successful prototypes- proven technologies- **READY** to enter the market (TRL 9)
- ✓ Capacity building of interested Indian SMEs (27 LOIs)
- ✓ Trained stakeholders (experts and companies) in 19 workshops (~1500 participants)
- ✓ **16 PhD and 6 MSc theses** developed within the PAVITR Project
- ✓ **16 articles published** in scientific journals
- ✓ Outreach and dissemination activities through national and international electronic media and print media (DW Video)

Thank You for your Attention