Sarah Cosentino, Ph.D.
Graduate School of Advanced Science and Engineering
Waseda University, Tokyo

Interactive Musical Humanoid Robots
– seen by an European researcher in Japan

EUROPA HOUSE, TOKYO, JAPAN
DECEMBER, 11, 2015
1. **My research work**
 - musical interacting robots

2. **My experience in Japan**
 - why, how
 - grants
 - plus and minus of international mobility
 - personal feelings, working atmosphere

3. **My relation to Europe while in Japan**
 - cooperation going on, or planned
 - next employment
 - short comparison between work environments in Japan and Europe
Entertainment

- provides amusement or enjoyment [1]
- holds the attention of an audience
- intrinsically motivating

Social interaction = Entertainment

- Users not satisfied with the role of pure observer
- want to be involved and have an influencing role [2]

Applications:

- Educational [3]
 - Rehabilitation [5]
 - Psychological support [6]

[1] Oxford English dictionaries
[7] Statista (online, 2013)

Estimated global entertainment market value from 2014 to 2018 (in trillion U.S. Dollars)
ENTERTAINMENT ROBOTICS

Problems

1. Non-humanlike interaction abilities
2. No feedback from audience
3. Fixed performance

- *Vocal* commands recognition few languages
- *Wave* and *Point* recognition rate ~ 50%
- Smile and Frown recognition rate ~ 100% but 10s continuous signal → non-natural

- No interaction
- Coordination signals expression
- Creative interaction with visual signals recognition

WASEDA entertainment robots

- Facial and body emotional expression

References

Human interaction:

1. **MULTIMODAL**
2. **CONSCIOUS** and **UNCONSCIOUS**
3. **ADAPTIVE** - changes depending on feedback

Humans → Media:
- Social and natural
- Like interaction in real life \([1]\)

Problem 1: non-humanlike interaction abilities
• Limited to simple direct verbal commands
Solution
 – Complex language

Problem 2: not multimodal
• Limited to one communication channel
Solution
 – Several simultaneous communication channels

Problem 3: no emotional adaptation
• Limited to conscious, direct commands
Solution
 – Emotional communication of the human partner
HUMAN COMMUNICATION ANALYSIS

1. MULTIMODAL
2. CONSCIOUS and UNCONSCIOUS
3. ADAPTIVE - changes depending on feedback

Non verbal communication

Conscious signals
- Vocal paralanguage
- Codified gestures

Unconscious signals
- Emotional
- Creative gestures

Kinesics

Verbal communication
Problem: synchronized detection and measurement

- **Conscious**
 - [active control]
 - [aware]
 - [external]
 - [visible]

- **Unconscious**
 - [unaware]
 - [uncontrolled]
 - [invisible]
 - [internal]

Interaction

- Vocal emission
- Face expression
- Body movement
- Blood pressure
- Skin conductance
- Respiration
- Heart rate
- Brain activity

Physiological Interaction
HUMAN PARAMETERS SENSING TECHNOLOGIES

• Audiovisual sensors

PROS
- Low cost
- Background
- Ecological

CONS
- Not robust
- Multiple tracking
- Noise affected

- Vocal emission
- Face expression
- Body movement

• Wearable sensors

PROS
- Multiple tracking
- High precision
- Light computation
- Robust

CONS
- Not portable
- Expensive
- Non ecological
- Difficult to integrate

- Blood pressure
- Skin conductance
- Respiration
- Heart rate
- Brain activity

Interaction

Physical

- Microphone
- Camera
- IMU
- EMG

Physiological
Development of a multi-sensor system to obtain real-time objective data on human state:

- **Inexpensive** – compared to current solutions
- **Portable** – Untethered and lightweight, allows ecological human data monitoring
- **Reconfigurable** – Use interchangeable modular sensors that can be added or removed as needed.
REAL-TIME NON-VERBAL ARTISTIC INTERACTION

WF4-RVI

Robot – musician direct interaction

Musician

Robot – conductor indirect interaction

Conductor

WF4-RVI

Robot – dancer intuitive interaction

Dancer

WAS3
INDIRECT INTERACTION
PERCEPTION RESULTS

• Perception survey
 – questionnaire Likert scale 10 points

• Performance comparison
 – robot playing “as is”
 – robot following the artist using the interaction system
 – professional musician following the artist

*** : p<0.005

Result of questionnaire

<table>
<thead>
<tr>
<th>Metric</th>
<th>Human-human</th>
<th>Without interaction system</th>
<th>With interaction system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entertainment level of performance</td>
<td>***</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Phrase diversity</td>
<td>***</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Similarity to human-human performance</td>
<td>***</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Overall Impression</td>
<td>***</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

*** : p<0.005
DIRECT HUMAN COMMUNICATION SIGNALS

Problem 1: non-humanlike interaction abilities

Experiment 1: Direct signaling gestures

Experiment 2: Indirect conducting gestures

- Complex non-verbal language: codified, symbolic
 - Learn and recognize

The system can be used to detect and recognize human conscious gestural communication

SUCCESS
- Non-verbal language recognition
- Real-time interaction
- No equal previous system

FAILURE
- Performance perceived not completely natural
- Language not completely modelled
Problem 2: not multimodal
Problem 3: no emotional adaptation

Experiment 3: Dance interaction
– Two channels: body posture and movement velocity
– Creative gestures: not codified, intuitive
 • Perceive and interpret

The system can be used to detect and recognize human emotional creative communication

SUCCESS
– Multimodal non-verbal social communication
– Real-time interaction

FAILURE
– Performance perceived not completely natural
– Language not completely modelled
Journal articles (3):

International conferences (16). Main papers:

Workshop (1):

Invited Talks (6):

 Invited talk at University of Genova – DIBRIS laboratory, Genova, ITALY, February, 2015
 Invited talk at Facebook Inc. HQ, Menlo Park, Palo Alto, USA, October, 2014
 Invited talk at Aix-Marseille Universite’ Institut de Neurosciences de la Timone, Marseille, FRANCE, September 2014
 Invited talk at University of Birmingham IRLAB – Intelligent Robotics Lab, Birmingham, UK, September 2014
 Invited talk at University of Genova – DIBRIS laboratory Genova, ITALY, February 2015
 Invited talk at Carnegie Mellon University – InterACT laboratory, Pittsburgh, PA, USA, March 2014
1. My research work
 • musical interacting robots

2. My experience in Japan
 • why, how
 • grants
 • plus and minus of international mobility
 • personal feelings, working atmosphere

3. My relation to Europe while in Japan
 • cooperation going on, or planned
 • next employment
 • short comparison between work environments in Japan and Europe
WHY JAPAN

• ROBOTICS!!!
• Vulcanus in Japan program

WHAT IS VULCANUS IN JAPAN?

The programme consists of industrial placements for EU* students. The whole programme takes place in Japan. **It starts in September and ends in August** of the following year in order to accommodate the academic year, in EU* Countries.

The students follow:
- a seminar on Japan;
- a four-month intensive Japanese language course;
- an eight-month traineeship in a Japanese company.

PROGRAMME OBJECTIVES

The objectives of the programme are to get acquainted with the range of advanced technologies employed by a leading Japanese host company, to learn Japanese and to understand and appreciate Japanese culture with a view to an enriching one-year experience abroad, to provide an opportunity for students to interact with Japanese business and people.
HOW JAPAN – GRANTS

• **StudyJapan**: general information to study in Japan

• **JASSO**: information on scholarships to study in Japan
 – http://www.jasso.go.jp/study_j/scholarships_e.html

• **MEXT and JSPS** scholarships
 – Information on the website of Japanese embassy in one's own country

• **EURAXESS**: general information for researchers mobility
PLUS AND MINUS OF INTERNATIONAL MOBILITY

• PLUS

- Stability
- Meaningful cultural exchanges
- Broader knowledge
- Exciting life experiences

• MINUS

- ?
PERSONAL FEELINGS

• Ph.D. in Japan
 – Independent work
 – Exciting and interesting
 – Frustrating and insane

• Working atmosphere
 – It depends on the environment and coworkers
 – It depends on one’s own disposition
1. **My research work**
 - musical interacting robots

2. **My experience in Japan**
 - why, how
 - grants
 - plus and minus of international mobility
 - personal feelings, working atmosphere

3. **My relation to Europe while in Japan**
 - cooperation going on, or planned
 - next employment
 - short comparison between work environments in Japan and Europe
RELATION TO EUROPE WHILE IN JAPAN

• **Cooperation**
 – Research IS cooperation
 – Cooperation is networking
 – Networking might result in interesting offers

• **Comparison**
 – Japan
 • More precise
 • Stricter
 – Europe
 • More easy-going
 • More tutored
THANK YOU VERY MUCH FOR YOUR ATTENTION!