27/10/2020
The Human Resources Strategy for Researchers

Representations of p-adic groups and arithmetic (STEVENSS_U21SF)

This job offer has expired


  • ORGANISATION/COMPANY
    University of East Anglia
  • RESEARCH FIELD
    Mathematics
  • RESEARCHER PROFILE
    First Stage Researcher (R1)
  • APPLICATION DEADLINE
    31/05/2021 23:00 - Europe/London
  • LOCATION
    United Kingdom › Norwich
  • TYPE OF CONTRACT
    Other
  • JOB STATUS
    Other
  • OFFER STARTING DATE
    01/10/2021

OFFER DESCRIPTION

The Local Langlands Correspondence has motivated a great deal of Number Theory and Representation Theory over the last fifty years. It connects representations of (roughly) the absolute galois group of a p-adic field to the representations of a matrix group G over the field. In the original formulation (now proved for several families of matrix groups G, including general linear groups) it considered only complex representations but, more recently, representations with coefficients in other rings or fields have been considered also. The correspondence results in a partition of the irreducible representations of G into L-packets (which are singletons for general linear groups), each of which is conjecturally characterised by an equality of local factors (L-functions and e-factors) – though a definition for such factors is only known for “generic” representations, of which there is (at least conjecturally) precisely one in each packet.

One of the difficulties in studying this is that the representations of G are (almost all) infinite-dimensional, so they are quite hard to get a handle on. One way for doing so, which has been very successful, is to restrict them to compact open subgroups K: we then look for representations of K whose presence in this restriction characterizes some property which representations of G might have; this property might be being “unramified”, ”tame”, “generic”,… Similarly, this restriction can be used to give very explicit descriptions of the representations of G, using arithmetic data. Such results also have interpretations via the Langlands correspondence, so consequences for the absolute galois group.

This PhD project will be in the area of the local Langlands correspondence, exploring some of the problems raised above, or related questions.

 

Funding Notes

This PhD project is offered on a self-funding basis. It is open to applicants with funding or those applying to funding sources. Details of tuition fees can be found at https://www.uea.ac.uk/about/university-information/finance-and-procureme...

A bench fee is also payable on top of the tuition fee to cover specialist equipment or laboratory costs required for the research. Applicants should contact the primary supervisor for further information about the fee associated with the project.

More Information

Offer Requirements

Specific Requirements

Acceptable first degree in Mathematics. 

The standard minimum entry requirement is 2:1.

Work location(s)
1 position(s) available at
University of East Anglia
United Kingdom
Norwich
NR4 7TJ
University of East Anglia, Norwich Research Park, Norwich

EURAXESS offer ID: 571445

Disclaimer:

The responsibility for the jobs published on this website, including the job description, lies entirely with the publishing institutions. The application is handled uniquely by the employer, who is also fully responsible for the recruitment and selection processes.

 

Please contact support@euraxess.org if you wish to download all jobs in XML.