13/10/2020
The Human Resources Strategy for Researchers

PhD Studentship - Mathematical modelling of poro-mechanics of soil


  • ORGANISATION/COMPANY
    University of Southampton
  • RESEARCH FIELD
    Mathematics
  • RESEARCHER PROFILE
    First Stage Researcher (R1)
  • APPLICATION DEADLINE
    31/08/2021 00:00 - UTC
  • LOCATION
    United Kingdom
  • TYPE OF CONTRACT
    Permanent
  • JOB STATUS
    Full-time

OFFER DESCRIPTION

Supervisor:Tiina Roose

Co-supervisor William Powrie

Project description

Soil is one of the most complex and important self-assembling organo-mineral composites in the world. All human food supply, ecosystem and infrastructure services depend on soil, yet we have very little understanding of what happens in soil. Developing such understanding is important, as climate change is likely to alter soil function and we need to find new robust engineering practices and modify existing ones to enable effective soil resource management. Combinatorial experiments, especially those involving climate effects, are very expensive and time consuming, hence the development of mathematical models to describe soil processes is needed to help design more cost effective and powerful experiments. However, such models are only as good as the data used to validate them. As part of an ongoing program of research we have accumulated a body of novel data to describe soil function and are now in a position to develop new mathematical models for the mechanical and flow behaviour of partly saturated soils. 

 We will particularly investigate how the degree soil water saturation influences soil mechanics. It is clear to any person walking on the beach that there is an optimal level of water content that makes the sand most stable/hard; if the water content is too high the sand is fluid and one gets bogged down in it, and if the sand is completely dry it is very mobile again making it hard to walk on. The ancient Egyptians recognised this effect; when building the pyramids, they watered the sand ahead of the barges transporting the rocks to improve its trafficability (see the picture below). The concept is well known in soil mechanics, but established theory does not address the non-uniformity of moisture content distribution within the soil, which becomes more significant as the range of grain sizes present increases. Thus prediction of the strength and bulk behaviour of a real soil, with a mixture of grain sizes and mineralogies, has not been addressed before. 

In this project we will develop new mathematical models of soil function that allow for

  • the development of new understandings of how soil mechanics and water flow interact
  • the role plants play in the determination of soil mechanics
  • the effect of (spatially and temporally) heterogeneous wetting and drying cycles on the soil mechanical behaviour.

 

We aim to be an equal opportunities employer and welcome applications from all sections of the community.

More Information

Map Information

Job Work Location Personal Assistance locations
Work location(s)
1 position(s) available at
University of Southampton
United Kingdom

EURAXESS offer ID: 567476
Posting organisation offer ID: 147714

Disclaimer:

The responsibility for the jobs published on this website, including the job description, lies entirely with the publishing institutions. The application is handled uniquely by the employer, who is also fully responsible for the recruitment and selection processes.

 

Please contact support@euraxess.org if you wish to download all jobs in XML.