The Human Resources Strategy for Researchers

Luminescent downshifting silicon quantum dots in photovoltaic devices (KAPLANIE_U19SCID)

This job offer has expired

    University of East Anglia
    First Stage Researcher (R1)
    31/05/2019 23:00 - Europe/London
    United Kingdom › Norwich


The worldwide deployment of photovoltaics follows an exponential growth, with crystalline silicon modules the dominant technology in the PV market. Alongside research efforts in third generation photovoltaics through fabrication of novel materials with promising efficiencies, there is an ongoing effort in improving the power conversion efficiency of established solar cell technologies. A promising development in recent years is the application of nanostructures with photo-luminescent downshifting or upconversion characteristics in existing or emerging solar cell technologies to allow more efficient harvesting of photons in the low or high energy regions of the solar spectrum [1]. The improvement in solar cell efficiency with the application of silicon (Si) quantum dots (QDs) with downshifting photo-luminescent characteristics in crystalline silicon solar cells has been investigated in [2,3], however several challenges remain when considering the scalability and lifelong performance of the devices.

This PhD project will investigate the incorporation of Si-QDs with downshifting photo-luminescent characteristics in multi-crystalline silicon solar cells, which exhibit poor external quantum efficiency at wavelengths below 500nm, and address spectral and thermalization losses. The optimum thickness of the QD layer will be investigated and the optical coupling with the solar cell will be optimized considering device scalability. The use of polymer encapsulation material as host will be examined along with linked degradation issues. The project will be based in Engineering and involve modelling, optical and electrical characterization of the photovoltaic device and collaboration with the School of Chemistry for the synthesis of the nanoparticles.

Applicants must have a 1st or 2.1 (or equivalent) undergraduate degree in Physics, Electrical/Electronic/ Mechanical/ Energy Engineering or related discipline. An MSc degree in one of these subject areas is desirable but not necessary. Experience in a computer programming language is essential and previous experimental work with solar cells or nanocoatings is desirable.

Funding notes:

This PhD studentship is funded by the Faculty of Science for 3 years.  Funding is available to UK/EU applicants and comprises home/EU tuition fees and an annual stipend of £15,009.  Overseas applicants may apply but they are required to fund the difference between home/EU and overseas tuition fees (which for 2019-20 are detailed on the University’s fees pages at https://portal.uea.ac.uk/planningoffice/tuition-fees. Please note tuition fees are subject to an annual increase).

More Information

Offer Requirements

Specific Requirements

Entry requirements: Acceptable first degree in Physics, Electrical/Electronic, Mechanical, Energy or Chemical Engineering or related discipline and minimum entry requirements is 2:1.

Work location(s)
1 position(s) available at
University of East Anglia
United Kingdom

EURAXESS offer ID: 395413


The responsibility for the jobs published on this website, including the job description, lies entirely with the publishing institutions. The application is handled uniquely by the employer, who is also fully responsible for the recruitment and selection processes.


Please contact support@euraxess.org if you wish to download all jobs in XML.